
CWP-720

Newton-Marchenko-Rose Imaging: Image

reconstruction based on inverse scattering theory

Jyoti Behura†, Kees Wapenaar‡ & Roel Snieder†
†Center for Wave Phenomena, Colorado School of Mines, Golden, Colorado
‡Delft University of Technology, Netherlands

ABSTRACT

Using only surface reflection data and first-arrival information, we generate
the incoming and outgoing wavefields at every image point in the subsurface.
An imaging condition is applied to these incoming and outgoing wavefields
directly to generate the image. Since the above algorithm is based on exact
inverse scattering theory, the reconstructed wavefields are accurate and contain
all multiply scattered energy in addition to the primary event. As corroborated
by our synthetic examples, imaging of these multiply scattered energy helps
illuminate the subsurface better. We also demonstrate that it is possible to
perform illumination compensation using our imaging algorithm that results in
improved imaging at large depths. Other advantages include targeted imaging,
potential reduction in computational time, parallelizable algorithm, imaging of
high frequencies at no additional cost, and inexpensive imaging in anisotropic
media.

Introduction

Wapenaar et al. (2011) propose a methodology for re-
constructing the 3D impulse response for any “virtual
source” in the subsurface using surface reflection data
and the direct arrivals from the “virtual source” to the
receivers on the surface. Their proposal is the 3D ex-
tension of the 1D iterative algorithm of Rose (2002b,a)
who shows that in layered media, it is possible to focus
all the energy at a particular time (or depth if the veloc-
ity is known) by using a complicated source signature.
In other words, the complicated source signature is the
impulse response between the surface location and the
depth at which the wave is focused.

It is imperative to briefly discuss the pioneer-
ing work of V. Marchenko, R.G. Newton, and J.H.
Rose on inverse scattering theory (Prosser, 1969;
Gopinath & Sondhi, 1971; Burridge, 1980; Bojarski,
1981; Newton, 1989) that is instrumental in the
development of the methodology of Rose (2002b,a)
and Wapenaar et al. (2011, 2012a) and the imaging
algorithm presented here. In 1D scattering theory,
Marchenko’s integral equation (Marchenko, 2011) deter-
mines the relation between the wavefield in the interior
of a medium and the reflected impulse response. It was
originally derived for spherically symmetric media (and
therefore 1D) and used only reflected waves. Newton
(1980, 1981, 1982) derived a similar relation that uses

all scattered waves (reflected and transmitted) in 2D
and 3D media. In 1D, this relation is given by
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where t is time, e is the direction of wave propaga-
tion, x is the 1D space, u+sc represents the scattered
wavefield, and R is the impulse response function. The
above relation is known as the Newton-Marchenko inte-
gral equation (Newton, 1980, 1981, 1982) that solves
for the wavefield inside a medium using the far-field
scattered data. Newton used the 3D version of equa-
tion 1 to solve the inverse scattering problem for the
Schrödinger wave equation. Rose et al. (1985) general-
ized the Newton-Marchenko equation to the scalar wave
equation and also derived the equation for attenuative
and time-dependent media (Rose et al., 1986). Later,
Budreck & Rose (1992) derived the relation for waves
propagating in non-attenuative elastic media. A phys-
ical explanation of the above inverse scattering theory
was provided by Rose (2002b,a) who showed that the
ideas of focusing and time-reversal in fact result in the
Newton-Marchenko equation.

The first step involved in solving for the scatter-
ing potential is to solve the Newton-Marchenko inte-



198 J. Behura, K. Wapenaar, & R. Snieder

gral equation and find the wavefield everywhere in-
side the medium. Newton (1980, 1981, 1982) solved
the inverse scattering problem for the Schrödinger wave
equation by combining the Newton-Marchenko inte-
gral equation with high-frequency asymptotics. This ap-
proach becomes more complicated for the wave equation
(Budreck & Rose, 1992). A significant breakthrough
was made by Rose (2002b,a) who proposed an iterative
approach, which he named ‘single-sided’ auto-focusing,
that determines the wavefield in 1D media by focus-
ing the incident wave at a specified time. Rose proved
that the incident wave that focuses the wavefield in the
interior comprises of a delta function (band-limited in
practice) followed by the time-reversed solution of the
Marchenko equation. Rose’s algorithm was recently im-
plemented on 1D seismic data by Broggini et al. (2011)
who again show that a ’virtual source’ response can be
generated from surface reflection data alone. Besides
extending Rose’s iterative algorithm to higher dimen-
sions, Wapenaar et al. (2011, 2012a) also showed that
the wavefield at any interior location can also be decom-
posed into the “down-going” and “up-going” wavefields
at the “virtual source”. They also proposed an algo-
rithm to image internal multiples by generating virtual-
source responses at various depth levels.

The “down-going” and “up-going” wavefields are
in fact the incoming and outgoing wavefields, respec-
tively, at the point of focus. Here, we show how the
incoming and outgoing wavefields can be directly used
for imaging the subsurface. In honor of the contribution
of Newton, Marchenko, and Rose, we call the imaging
algorithm introduced here as Newton-Marchenko-Rose
Imaging, NMRI∗ in short. Besides demonstrating our
imaging technique on synthetic examples, we discuss its
advantages over existing imaging methods, in particular
reverse-time migration (RTM).

1 ALGORITHM

Any seismic imaging algorithm consists of two steps
- wavefield reconstruction and imaging condition. For
example, RTM is a two-way imaging technique that
utilizes wavefields reconstructed in time by accurately
implementing the wave equation (Baysal et al., 1983;
Whitmore, 1983; McMechan, 1983) in a background
velocity model. Under this technique, the source-
and receiver-wavefields are reconstructed by forward-
propagating the source signature and back-propagating
the receiver recordings using a numerical solution of the
wave equation (commonly a finite-difference algorithm).
Wavefield reconstruction in RTM is followed by the
application of an imaging condition (commonly cross-
correlation) to image the reflectors. In other words, we

∗NMRI also stands for Nuclear Magnetic Resonance Imaging
which is a medical imaging technique.
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Figure 1. Schematic in 1D showing the anti-causal (G−,
incoming) and causal (G+, outgoing) Green’s functions, in
red and blue respectively, for an image point (a) not on a

reflector and (b) on a reflector. The black dot represents the

point of focus where the incoming waves collapse and from

where the outgoing waves are emitted.

find the similarity between the wavefield that is incident
on the reflector and the wavefield that is reflected. The
similarity will be high at the reflector position and low
elsewhere. Imaging using RTM, however, assumes that
all multiples (surface-related and internal) have been
suppressed from the data; if not, the multiples could
result in spurious events on the image.

NMRI, on the other hand, decomposes the wave-
field into causal (G+) and anti-causal (G−) Green’s
functions. G+ and G− make up the full Green’s func-
tion G which is the impulse response on the surface for a
source at the image point. The causal Green’s function
G+ can be interpreted as the impulse response due to
a source that is emitting such that the waves are out-
going from it (Figure 1a); while the anti-causal Green’s
function G− is due to an absorbing source such that
the incoming waves collapse (or focus) onto the source
location (Figure 1a) at a particular time.

In NMRI, as the incoming incident wavefield fo-
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Figure 2. Incoming and outgoing wavefields at a reflector position (a) and a depth devoid of reflectors (b). The arrows
point to parts of the wavefield generated from internal multiples. (c) The density model of the subsurface and (d) the NMRI
image. A constant velocity of 2000 m/s was used for modeling and imaging. Since the normal-incidence reflection coefficient is

approximately 0.1 for both reflectors, the internal multiples are weak.

cuses at the imaging point, a reflection is generated
depending on whether there is actually a reflector at
that point in space (Figure 1). In the presence of a re-
flector (Figure 1b), the incident wavefield generates a
reflected outgoing-wave, i.e. G− and G+ coincide kine-
matically. On the other hand, in the absence of a reflec-
tor at the image point (Figure 1a), no reflected waves
are generated at the image point and G− 6= G+ kine-
matically. Therefore, only at a reflector location, the
incoming-wavefield (G−) coincides with the outgoing-
wavefield (G+) which gives rise to a non-zero zero-lag
cross-correlation. The synthetic example in Figures 2a
and 2b demonstrate the above arguments. For the image
point at z = 500m, the incoming and outgoing wave-

fields do not coincide (Figure 2a) while for z = 660m,
they do (Figure 2b).

Since the Newton-Marchenko equation is based on
exact inverse scattering, the reconstructed incoming and
outgoing wavefields contain all multiply-scattered en-
ergy. Therefore, the wavefields that are incident on and
reflected from the scatterers contain all the multiply-
scattered energy in addition to the direct transmitted
arrival. Note the presence of these multiples in Fig-
ures 2a and 2b. Any multiply-scattered wave that is
incident on a scatterer will also have a correspond-
ing scattered wave occurring at the same time. In Fig-
ure 2b, the multiply-scattered incoming and outgoing
waves coincide in time, while in Figures 2a, they do
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Figure 3. (a) The original velocity model of the fold system
and (b) the smoothed version used for imaging and (c) the
corresponding NMRI image. A constant density of 1 gm/cm3

was used in generating the reflection data.

not. Hence, in addition to the primary wavefield, all
multiply-scattered energy will also be imaged accurately
using NMRI. Other advantages of NMRI are discussed
later.

The pseudo-code for NMRI is given in Algorithm 1.
The incoming and outgoing wavefields are constructed
at every location in space using the recipe of Rose
(2002b,a); Wapenaar et al. (2011). An imaging condi-
tion is applied to these two wavefields to obtain the
image. Note that a background velocity model is neces-
sary to compute the first arrivals at the surface from an
impulse at the image point.

Algorithm 1 The NMRI algorithm. Superscript “−t”
represents time reversal and “∗” depicts convolution.
ui0 are the first arrivals from the image point onto the
surface, ui

1,2 are the two types of incident waves and
ur
1,2 are the corresponding reflected wavefields at the

surface, and R is the reflection response. G+ and G− are
the causal (outgoing waves) and anti-causal (incoming
waves) Green’s functions, respectively.

for any x,y,z in image space do

Compute first arrivals ui0

Initialize:
ui
1,2 ← ui0,−t

ur
1,2 ← 0

repeat

Mute ur
1,2 beyond first arrivals

Update incident wavefield:
ui
1 ← ui0 − u

r,−t

1

ui
2 ← ui0 + u

r,−t

2

Update reflected wavefield:
ur
1 ← ui

1 ∗R

ur
2 ← ui

2 ∗R

until ur
1,2 converge

G+ +G− = ur
1 + u

i,−t

1

G+ −G− = ur
2 − u

i,−t

2

Solve for G+ and G−

Imaging condition on G+ and G−

end for

2 NMRI IN ACTION

Here, we present three synthetic data results to demon-
strate the performance and effectiveness of NMRI. The
layer-cake (Figure 2) and Lena (Figure 4) models are
constant velocity, variable density models while the fold
model (Figure 3) has a variable velocity and constant
density. The data acquisition is a fixed surface spread in
each case where the sources and receivers are at z = 0m.
The source and receiver spacing is 10m in all the three
acquisitions. Time sampling is also the same (0.004 s) in
each case. The direct arrivals were muted from the shot
gathers. Besides this, no other processing was performed
on the data; the data contain all orders of internal mul-
tiples.

Ray-tracing was used in computing the first breaks
for the layercake model and for Lena; for the fold
model, the first breaks were computed using a finite-
difference wave-propagation code in a smoothed version
(Figure 3b) of the true velocity model. An incorrect
background velocity model will result in incorrect po-
sitioning of the reflectors. Although not analyzed here,
it would be interesting to study how the NMRI image
would differ from the RTM image for an incorrect ve-
locity model.

Note that NMRI produced a satisfactory image
(Figures 2d,3c, 5a, and 5b) in each case. Some steeply-
dipping events were not imaged accurately for the fold
model and for Lena because of the lack of illumination of
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Figure 4. (a) The density model used in imaging Lena. (b) A sample shot gather. A constant velocity of 2000 m/s was used
for modeling and imaging.

these features. Even though the reflection data is com-
plicated (Figure 4b) and contains all orders of internal
multiples, NMRI imaged the primary as well as all the
scattered events appropriately.

3 ADVANTAGES OVER RTM

True amplitude/AVA: NMRI is based on exact inverse
scattering theory and therefore the reconstructed wave-
field in the interior of the medium is accurate irrespec-
tive of the velocity and density distributions in the sub-
surface. Hence, the NMRI image should be closer to
the true reflectivity of the subsurface. Angle gathers for
NMRI can be generated in the same way as in RTM.
Amplitude variation with angle (AVA) analysis (on an-
gle gathers) for NMRI, however, should be more reli-
able because the wavefields are accurate. Note that the
amplitude of the first arrivals, however, might not be
accurate because it is constructed from the best known
background velocity and density models. Incorrect am-
plitude of the first arrivals would result in inaccurate
amplitudes of the scattered waves.

Multiples are imaged : As mentioned above, since
the wavefields in NMRI are reconstructed accurately,
the image should be better than existing imaging al-
gorithms. Also, all orders of multiples are reconstructed
and imaged accurately. Reflectors not illuminated by the
direct arrival, might be illuminated by internal multiples
(Fleury, 2012); these reflectors would be visible on the
NMRI image but not on the RTM image. Figure 5a is
generated using only primaries while figure 5b results
from imaging both primaries and internal multiples,
with the difference between the two shown in figure 5c.

Since Figure 5a is generated using the correct Green’s
function (as the first arrival), it can be interpreted as
the best possible RTM image (generated from data con-
taining only primary reflections). Albeit marginally, in-
ternal multiples have contributed to the image at many
locations (Figure 5c). Note that the internal multiples
do not result in any random or spurious events in the
image. This is also corroborated by the virtual-source
imaging of internal multiples of Wapenaar et al. (2011)
and Wapenaar et al. (2012b) who note that the image
corresponds to the reflectivity of the model. Imaging
of multiples also renders multiple (both surface-related
and inter-bed) prediction and suppression unnecessary.
Although, none of the examples presented here contain
surface-related multiples, the theory underlying NMRI
imposes no limitations on the type of multiples.

Illumination compensation: Illumination compen-
sation can be performed by manipulating the amplitude
of the leading delta function in the incident wavefield
such that each primary arrival at the image point has
the same amplitude. By using the same unit delta func-
tion for all first arrivals, we ensure that the reflector is
equally illuminated from all incidence angles and has the
same illumination at all depths. However, if the Green’s
function is used instead of a uniform delta function, the
image at larger depths is poor because of insufficient il-
lumination. Note that the above illumination compensa-
tion approach not only accounts for geometrical spread-
ing but also for uneven and partial illumination at any
image point. The image of Lena after illumination com-
pensation is shown in Figure 5d. Clearly the NMRI im-
age with illumination compensation (Figure 5d) is sig-
nificantly better than the one without any compensation
(Figure 5b). Application of a low-cut filter to Lena (Fig-
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Figure 5. The NMRI image after one (a) and two (b) iterations and their difference (c). In (a) and (b), the Green’s function
is used for the first arrival. (d) The NMRI image after two iterations with illumination compensation, i.e. the same magnitude

of delta function is used for all first arrivals. (e) Low-cut filtered version of (d). (f) Targeted imaging of Lena’s left eye.
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ure 5e) shows that many small details have been imaged
in detail. Moreover, AVA would become more reliable as
all the incident waves have the same amplitude. How-
ever, the effect of using a delta function instead of the
Green’s function on focusing and on the amplitudes of
multiply scattered waves needs more thorough analysis.
Irrespective of the illumination, some portions of image
that have no reflected energy reaching the surface will
never be imaged.

Targeted imaging : Note that for the computation of
the image at any location in the image space, we need
the first breaks at the surface for an impulse at the im-
age point. Since the computation of the first breaks (us-
ing ray-tracing or finite-differences) can be done inde-
pendently for each image point, it is possible to perform
targeted imaging using NMRI. The targeted imaging of
Lena’s left eye is shown in Figure 5f. Wapenaar et al.
(2011) also show that targeted imaging of internal mul-
tiples is possible using virtual-source wavefields.

Computationally cheap: The most expensive com-
ponent of any imaging algorithm is the computation of
the wavefield in the interior of the medium. In RTM,
the source- and receiver-wavefields are computed by
solving the wave equation numerically which makes the
method expensive. In NMRI, wavefield computation is
done through an iterative process which is computa-
tionally inexpensive. For each image point, only a single
run of ray-tracing is necessary to compute the first ar-
rivals which are used for an initial guess of the incident
wavefield. Thereafter, both the reflected and incident-
wavefields are updated using the iterative procedure
described in Algorithm 1 (in our tests two iterations
were enough in most cases). The updated scattered field
is obtained by convolving the updated incident wave-
field with the reflected impulse response (recorded data)
for each iteration. The low computational cost of ray-
tracing (or Gaussian-beam modeling) and a set of convo-
lutions can make NMRI significantly faster than RTM.
For complicated subsurfaces, however, an accurate first-
arrival might be necessary which would necessitate the
use of a finite-difference approach for its computation.
In this case, NMRI does not hold any computational ad-
vantage over RTM. Other solutions like Gaussian-beam
modeling may be adopted to alleviate this problem.

High frequencies: The cost of RTM increases signif-
icantly with increasing frequency content because the
extrapolation grid has to be more finely sampled. Wave-
field computation using NMRI, on the other hand, has
no such limitation because the frequency content of the
incident wave and the impulse response are only limited
by the temporal Nyquist limit.

Highly parallelizable: Since the image at each loca-
tion in the image space can be computed independently,
the algorithm is highly parallelizable in the image space.
For example, if there are 100 grid points in the image
space, 100 processes could be run simultaneously on a
cluster to obtain the image.

Anisotropy : Wavefield extrapolation in anisotropic
media using numerical methods is expensive. In addi-
tion, depending on the dispersion relation used, the
wavefield can contain shear-wave artifacts and incor-
rect P-wave amplitudes. In NMRI, however, if the first
breaks are computed using ray-tracing, then imaging in
anisotropic media becomes extremely cheap compared
to RTM. Moreover, the wavefields in NMRI are accu-
rate in amplitude even if the medium exhibits velocity
anisotropy.

4 DISCUSSION AND CONCLUSIONS

The first arrivals at the surface from an impulse at any
image point can be computed either using ray-tracing
or solving the wave equation numerically using finite-
differences. If the true phase and amplitude of the first
arrival is desired, one can use dynamic ray-tracing or
Gaussian-beam modeling. However, to produce an im-
age with illumination compensation, it is enough to do
kinematic ray-tracing followed by a convolution with a
delta function (Rose, 2002b,a). If the background ve-
locity field results in multipathing, one must make sure
that the incident wavefield contains all multiple arrivals;
if not, the incident wave would not produce a quality fo-
cus at the image point.

Wapenaar et al. (2012a) also demonstrate that the
phase of the direct arrival is important in obtaining the
correct amplitude and phase of the retrieved impulse re-
sponse. To achieve this one can generate the first arrivals
by numerically solving the wave-equation. In order to
compensate for illumination, one must normalize each
incident wave with it’s energy content to make sure that
all incident waves have similar energy. As shown above,
in the absence of normalization, deeper reflectors will
not be illuminated adequately.

For a relatively uncomplicated subsurface, ray-
tracing should suffice; the numerical solution of wave
equation might be necessary for intricate first arrivals.
Ray-tracing, however, has one significant advantage: it
is substantially cheaper than solving the wave equation
numerically (especially in anisotropic media). If mini-
mizing computational cost is desired, ray-tracing should
be the preferred method for computing the first arrivals.

Implementation of NMRI requires the construction
of special shot-point gathers, which we call common
surface-point gathers. Here, each bin location in the sur-
vey is a shot-point and every other bin is a receiver.
Besides using conventional shot gathers in their con-
struction, reciprocity can be used to further populate
the common surface-point gathers. If no real traces ex-
ist for the shot and receiver combination, the trace can
be interpolated or just assigned a null value. To reduce
computational cost, an aperture can also be defined as
done in many existing imaging algorithms.

Newton-Marchenko-Rose Imaging, which is based
on exact inverse scattering theory, shows promise in
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imaging complicated subsurfaces. Besides primaries, it
can be used for illumination compensation and can im-
age both surface-related and internal multiples. This
should make NMRI useful for imaging poorly illumi-
nated areas, especially underneath salt bodies. In com-
parison to RTM, NMRI has other important advan-
tages, such as, it is potentially computationally cheaper,
can image arbitrarily anisotropic media, can be used for
targeted imaging, and should generate accurate AVA re-
sponse.
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