Anisotropic waveform inversion of VSP data

Harpreet Singh, Vladimir Li and Ilya Tsvankin

Center for Wave Phenomena, Colorado School of Mines
P-wave kinematics in VTI media

\[V_{P0}, \varepsilon, \delta \text{ or } V_{nmo}, \eta, \delta \]

\[V_{nmo} = V_{P0} \sqrt{1 + 2\delta} \]

\[\eta = \frac{\varepsilon - \delta}{1 + 2\delta} \]
Methodology

- wavefield extrapolation operator
- objective functions
- gradients from adjoint state method
VTI wavefield extrapolation

Differential

Integral
Data-difference objective function

\[J(m) = \frac{1}{2} \sum_{n=1}^{N} ||d_{cal} - d_{obs}||^2 \]

\[d_{cal} : \text{calculated data} \]
\[d_{obs} : \text{observed data} \]
Correlation-based objective function

\[J_c(m) = - \sum_{\tau} \mathcal{W}(\tau) \mathcal{C}(e_{\text{obs}}, e_{\text{cal}}, \tau) \]

\(\mathcal{W}(\tau) \) : penalty operator
\(\mathcal{C}(e_{\text{obs}}, e_{\text{cal}}, \tau) \) : normalized cross correlation
\(e_{\text{cal}} \) : envelope of calculated data
\(e_{\text{obs}} \) : envelope of observed data
\(\tau \) : lag

\(\text{(Wu and Alkhalifah, 2017)} \)
Marmousi-II model
Anisotropy parameters
Shot gathers
Initial V_{nmo}-model ($\eta = \delta = 0$)
Inversion gradient for V_{nmo}

Correlation

Data-difference
Smoothed V_{nmo}-gradient

Correlation

Data-difference
Smoothed η-gradient

Correlation

Data-difference
Smoothed δ-gradient

Correlation

Data-difference
Research plan

- extend to elastic VTI and orthorhombic media
- implement for Distributed Acoustic Sensing (DAS) data
- explore machine-learning-based model constraints
Acknowledgments

- Antoine Guitton (DUG)
- Hui Wang (CGG)