Image-domain wavefield tomography for acoustic VTI media

Vladimir Li1, Antoine Guitton1,2, Ilya Tsvankin1 and Tariq Alkhalifah1,3

1Center for Wave Phenomena, Colorado School of Mines
2DownUnder GeoSolutions
3King Abdullah University of Science and Technology
Seismic tomography methods

<table>
<thead>
<tr>
<th>Data domain</th>
<th>Ray-based</th>
<th>Wave-based</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Traveltime tomography</td>
<td>Full-waveform inversion</td>
</tr>
<tr>
<td>Image domain</td>
<td>Reflection tomography</td>
<td>Image-domain tomography</td>
</tr>
</tbody>
</table>
Image-domain criteria

<table>
<thead>
<tr>
<th>surface-offset CIGs</th>
<th>angle-domain CIGs</th>
<th>extended CIGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>θ</td>
<td>λ_x</td>
</tr>
<tr>
<td>z</td>
<td>z</td>
<td>z</td>
</tr>
<tr>
<td>flatness</td>
<td>flatness</td>
<td>focusing at zero lag</td>
</tr>
</tbody>
</table>
Advantages

compared to ray-based tomography:

- based on wave-equation migration
- no reflector picking

compared to FWI:

- operates directly with reflections
- initial model can be inaccurate
- low sensitivity to source wavelet
Challenges

- artifacts in extended images
- low sensitivity to δ
- trade-off between V_{nmo} and η
Extended-domain objective function

\[J = J_{DSO} + \alpha J_{PIP} \]

DSO: differential semblance optimization

PIP: partial image power
Idealized extended images

Inaccurate

Accurate
Extended images with artifacts

Inaccurate

Accurate
Preconditioning with approximation of H^{-1}

RTM

$m_0 = R^T d_r$
Preconditioning with approximation of H^{-1}

RTM

$$m_0 = R^T d_r$$

demigration and remigration

$$m_1 = R^T R m_0$$
Preconditioning with approximation of H^{-1}

\[m_0 = R^T d_r \]

demigration and remigration

\[m_1 = R^T R m_0 \]

solve

\[\| m_0 - B m_1 \|^2 \approx 0 \]

B: nonstationary convolutional filter (Guitton, 2017)
Layered model
Extended space-lag CIG (understated V_{nmo} and η)
Extended space-lag CIG

\[\lambda_x \ (\text{km}) \]

\[z \ (\text{km}) \]

influence of

\[V_{nmo} \]
Extended space-lag CIG

$\lambda_x \text{ (km)}$

$z \text{ (km)}$

$\text{influence of } \eta$
Extended space-lag CIG

$\lambda_x (\text{km})$

$z (\text{km})$

RTM

aperture-truncation artifacts
Extended space-lag CIG

RTM

Pseudoinverse
Workflow

Reflection data (P-waves)

VTI model (V_{nmo}, η, δ)

LSRTM gradient

matching filters

preconditioned LSRTM gradient

LSRTM image
Workflow

Reflection data (P-waves)

VTI model (V_{nmo}, η, δ)

LSRTM gradient

preconditioned LSRTM gradient

matching filters

LSRTM image

$J_{DSO} + \alpha J_{IP}$
P-wave reflection moveout in VTI media

- V_{nmo}, η, and δ

- low sensitivity to δ

- trade-off between V_{nmo} and η
Workflow

Reflection data (P-waves)

VTI model (V_{nmo}, η, δ)

LSRTM gradient

matching filters

preconditioned LSRTM gradient

$J_{DSO} + \alpha J_{IP}$

$\Delta V_{nmo}, \Delta \eta$

LSRTM image
Workflow

- **Reflection data (P-waves)**
- **LSRTM gradient**
- **preconditioned LSRTM gradient**
- **matching filters**
- **VTI model** (V_{nmo}, η, δ)
- **J_{DSO} + aJ_{IP}**
- **image-guided ΔV_{nmo}, $\Delta \eta$**
Workflow

Reflection data (P-waves)

Borehole data (δ-profiles)

VTI model (V_{nmo}, η, δ)

LSRTM gradient

matching filters

preconditioned LSRTM gradient

LSRTM image

$J_{DSO} + \alpha J_{IP}$

image-guided $\Delta V_{nmo}, \Delta \eta$

image-guided δ-field
Reflection data (P-waves) → LSRTM gradient → matching filters → preconditioned LSRTM gradient → LSRTM image → $J_{DSO} + \alpha J_{IP}$ → image-guided $\Delta V_{nmo}, \Delta \eta$ → updated VTI model (V_{nmo}, η, δ)

Borehole data (δ-profiles) → image-guided δ-field

VTI model (V_{nmo}, η, δ)
Stage 1 (V_{nmo})

- Reflection data (P-waves)
- Borehole data (δ-profiles)
- VTI model (V_{nmo}, η, δ)
- LSRTM gradient
- matching filters
- preconditioned LSRTM gradient
- $J_{DSO} + \alpha J_{IP}$
- image-guided ΔV_{nmo}
- updated VTI model (V_{nmo}, η, δ)
- image-guided δ-field
Stage 2 (η)

Reflection data (P-waves) → LSRTM gradient → matching filters → preconditioned LSRTM gradient

Borehole data (𝛿-profiles) → image-guided 𝛿-field

VTI model (V_{nmo}, η, δ) → $J_{DSO} + \alpha J_{IP}$

image-guided $\Delta\eta$ → updated VTI model (V_{nmo}, η, δ)
Stage 3 ($V_{nmo, \eta}$)

Reflection data (P-waves)

Borehole data (δ-profiles)

- VTI model ($V_{nmo, \eta, \delta}$)
 - LSRTM gradient
 - matching filters
 - preconditioned LSRTM gradient
 - $J_{DSO} + \alpha J_{IP}$
 - image-guided $\Delta V_{nmo, \Delta \eta}$
 - updated VTI model ($V_{nmo, \eta, \delta}$)
 - image-guided δ-field
<table>
<thead>
<tr>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>artifacts in extended images:</td>
<td>preconditioned LSRTM</td>
</tr>
<tr>
<td>low sensitivity to δ:</td>
<td>image-guided interpolation</td>
</tr>
<tr>
<td>trade-off between V_{nmo} and η:</td>
<td>multistage algorithm</td>
</tr>
</tbody>
</table>
Marmousi-II model (V_{nmo})
Anisotropy parameters
Initial V_{nmo} (initial $\eta=\delta=0$)
RTM with initial model
LSRTM with initial model
Parameter δ from interpolation
Stage 1: Update V_{nmo}
V_{nmo} after stage 1
V_{nmo} before stage 1
Extended LSRTM CIGs at $x = 3$ km

Before and after comparisons.
Extended LSRTM CIGs at $x = 5$ km

before

after
Stage 2: Update η
Parameter η after stage 2 (initial $\eta = 0$)
Stage 3: Update V_{nmo} and η
\(V_{nmo} \) after stage 3
V_{nmo} before stage 3
Parameter η after stage 3
Parameter η before stage 3
Parameter δ after stage 3
LSRTM with inverted model
LSRTM with initial model
Gulf of Mexico line (courtesy of Shell)
Initial $\delta = \varepsilon$ ($\eta = 0$)
Data preprocessing

- projection onto line
- debubbling
- P-Z summation
- removal of direct arrival
- smoothed-envelope normalization
Preprocessed data
LSRTM objective function

\[J = \frac{1}{2} \left\| W(d^{\text{obs}} - d^{\text{cal}}) \right\|^2 \]
RTM with initial model
LSRTM with initial model
Extended LSRTM CIGs with initial model

A

B

C
Preconditioned DSO η-gradient
Updated η-field
LSRTM with updated η
LSRTM with initial model
Initial $\delta = \varepsilon$ ($\eta = 0$)
Challenges

- Artifacts in extended images: preconditioned LSRTM
- Low sensitivity to δ: image-guided interpolation
- Trade-off between V_{nmo} and η: three-stage algorithm
Acknowledgments

- Shell
- Daniel Carvalho Rocha
- Hui Wang (CGG)
- Xinming Wu (UT Austin)
- Esteban Díaz (BP)
- Paul Fowler (FGS)
- Ken Larner
- Nishant Kamath (Seiscope)
Workflow

- Reflection data (P-waves)
- Borehole data (δ-profiles)

- VTI model \((V_{nmo}, \eta, \delta)\)
- LSRTM gradient
- matching filters
- preconditioned LSRTM gradient

- \(J_{DSO} + \alpha J_{IP}\)
- Image-guided \(\Delta V_{nmo}, \Delta \eta\)
- updated VTI model \((V_{nmo}, \eta, \delta)\)

- image-guided δ-field