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ABSTRACT
Existing methods for Green’s function extraction give the Green’s function that
accounts for wave propagation between two points from the correlation of field
fluctuations recorded at those points. In this work it is shown that the Green’s
function of the Schrödinger equation can be retrieved from intensity measure-
ments taken from three experiments where two time-harmonic sources first op-
erate separately, and then simultaneously. This makes it possible to infer the
phase and amplitude of the wave-function from intensity measurements over a
closed surface surrounding both sources.
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1 INTRODUCTION

Extracting the Green’s function from field fluctu-
ations is a technique that has gone through a
rapid growth (Larose et al., 2006; Curtis et al., 2006;
Wapenaar et al., 2008; Schuster, 2009). The principle of
Green’s function extraction has been formulated for the
Schrödinger equation (Snieder et al., 2007) and thus is,
in principle, applicable to quantum mechanics. In that
application one can retrieve the wave function by cross
correlating recorded field fluctuations excited by uncor-
related sources on a closed surface surrounding the re-
ceivers. This approach is, however, not practical since it
presumes that one can measure the wave-function which
is in general not accessible to direct observation.

In this work we present a different method that
allows extraction of the wave-function by considering
a sequence of three experiments with time-harmonic
sources at two locations rA and rB . In these experi-
ments one measures first the probability density flux
through a closed surface surrounding the sources when
each of the sources is used separately, and next mea-
sures the probability density flux when both sources
are used simultaneously. We show that these measure-
ments of the integrated probability flux can be used
to determine both the amplitude and phase of the
Green’s function G(rA, rB). Our method extracts the

Green’s function between two source locations, as in ref.
(Curtis et al., 2009), the key difference being that we
show that measurements of the integrated intensity are
sufficient to extract the full Green’s function, including
the phase.

Existing methods for phase retrieval, e.g. (Bunge et
al., 1974; Toda, 1992; Orlowski & Paul, 1994, Spence et
al., 2002), infer the phase of the wave function from
intensity measurements taken at the location where
the phase is retrieved. In the method proposed here,
the amplitude and phase of the Green’s function is
inferred from integrated intensity measurements at a
closed surface away from these sources. In holography,
phase information is restored from the interference of
a reference wave with waves reflected off an object
(Lauterborn et al., 1995). In this work the phase infor-
mation is retrieved from the interference of waves that
are excited by different time-harmonic sources.

2 RETRIEVING THE GREEN’S
FUNCTION FROM INTENSITIES

Consider the Schrödinger equation in the frequency do-
main

∇2ψ(r) +

„
k2 − 2m

~2
V (r)

«
ψ(r) = 4πq(r) , (1)



196 Snieder, Douma & Vasconcelos

! 

r
A

! 

r
B

! 

J
AB

! 

r
B

! 

J
B

! 

r
A

! 

J
A

! 

"V

! 

"V

! 

"V

Figure 1. Three source configurations and their probability density currents. The currents in the three configurations correspond
to fluxes ΦA, ΦB , and ΦAB , respectively.

where ~ is Planck’s constant divided by 2π, m the mass,
ω the angular frequency, k =

p
2mω/~ the wave num-

ber, V (r) a real, but otherwise arbitrary, potential, and
q(r) an inhomogeneous source term. The theory pre-
sented here is valid for time-harmonic fields with time
dependence e−iωt.

We next derive an expression for the probability
density current by considering ψ∗(E1)-ψ(E1)∗, where
the asterisk denotes complex conjugation and (E1)
stands for equation (1). Integrating the result over an
arbitrary volume V , with boundary ∂V , givesZ

V

`
ψ∗∇2ψ − ψ∇2ψ∗

´
dV = 4π

Z
V

(qψ∗ − q∗ψ) dV .

(2)
Applying Gauss’ theorem and using the following defini-
tion of the probability density flux (Merzbacher, 1970)

Φ = (~/2mi)
I

∂V

(ψ∗∇ψ − ψ∇ψ∗) · dS , (3)

reduces expression (2) to

− im

2π~
Φ =

Z
V

{q∗ψ − qψ∗} dV . (4)

We consider the three experiments shown in figure
1. First a time-harmonic source is present at location
rA. Then the experiment is repeated with a source only
at location rB , and then two time-harmonic sources are
used simultaneously at locations rA and rB . For each
source configuration the flux through ∂V is denoted by
ΦA, ΦB , and ΦAB , respectively. In the experiment in
the left panel of figure 1 the source is q(r) = δ(r− rA),
the response to this point source is given by the Green’s
function G(r, rA), hence equation (4) reduces to

− im

2π~
ΦA = G(rA, rA) −G∗(rA, rA) . (5)

The right hand side of this equation is equal to
2iIm(G(rA, rA)), with Im denoting the imaginary part.
Since the imaginary part of the Green’s function satis-
fies a homogeneous equation, it is finite at the source
(Oristaglio, 1989; Snieder et al., 2009), and the right
hand side of equation (5) therefore is finite. The ex-
periment in the middle panel of figure 1 gives the same

result for the source at rB

− im

2π~
ΦB = G(rB , rB) −G∗(rB , rB) . (6)

In the experiment in the right panel of figure 1
the excitation is given by q(r) = δ(r − rA) +
δ(r − rB), and the field therefore is given by
G(r, rA) + G(r, rB). The first term in the right hand
side of equation (4) now is equal to

R
V
q∗ψdV =R

V
{(δ(r− rA) + δ(r− rB)) (G(r, rA) +G(r, rB))} =

G(rA, rA) + 2G(rA, rB) + G(rB , rB), where the prop-
erties of the delta function and reciprocity G(rA, rB) =
G(rB , rA) are used in the last identity. Using this in
equation (4) yields

− im

2π~
ΦAB = G(rA, rA) + 2G(rA, rB) +G(rB , rB)

−G∗(rA, rA) − 2G∗(rA, rB) −G∗(rB , rB) .
(7)

Subtracting equations (5) and (6) from equation (7)
gives

G(rA, rB) −G∗(rA, rB) =
im

4π~
(ΦA + ΦB − ΦAB) .

(8)
The left hand side gives the imaginary part of

G(rA, rB). One might think that this is not enough
information to recover the full Green’s function, but
after a Fourier transform to the time domain the left
hand side corresponds to G(rA, rB , t) − G(rA, rB ,−t).
Since the Green’s function is causal, G(rA, rB , t) is only
nonzero for t > 0 and G(rA, rB ,−t) is only nonzero for
t < 0. By parsing these contributions the full Green’s
functions can be determined. The right hand side of
equation (8) depends on the measured fluxes. These are
real numbers that are accessible to observation. This
means that the right hand side of expression (8), which
can be measured, can be used with the sequence of three
experiments of figure 1 to obtain the full Green’s func-
tion, including its phase.

3 EXAMPLE, TWO-SLIT EXPERIMENT

We illustrate the theory with a two-slit experiment
where a plane wave is incident on a screen with two
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Figure 2. Definition of geometric variables for the two-slit

experiment.

slits separated by a distance R (figure 2). We assume
that the slits are very long in the y-direction, so that
the problem can be treated as a two-dimensional prob-
lem in the (x, z)-plane. The plane wave incident on the
slits effectively act as point sources in the (x, z)-plane at
locations rA and rB , respectively. The intensity of the
waves is measured at a recording screen indicated by the
dashed line. The surface ∂V consists of the screen on the
left (solid line of figure 2), the recording screen (dashed
line), and two segments joining the two screens. The lat-
ter segments do not contribute when taken at infinity.
Since the particles do not move through the screen with
the slits, the flux through this screen vanishes as well.
This reduces the surface integral to an integration over
the recording screen.

We consider the case where the potential to the
right of the screen vanishes (free particle), hence the
Green’s function solution to equation (1) is given by
(Arfken & Weber, 2001)

G(r, r0) = −iπH(1)
0 (k|r− r0|) , (9)

where H
(1)
0 is the zeroth order Hankel function of the

first kind. The distance between a point r on the
recording screen and the slits is given by |r − rA,B | =p
L2 + (z ∓R/2)2, where the upper sign is for the slit

at rA and the lower sign for the one at rB . We assume
in the following that the distance R between the slits
is much smaller than the horizontal distance L to the
recording screen and only retain terms to first order in
R/L or R/r. In this approximation

|r− rA,B | = r ∓ zR/2r . (10)

When the distance L is much larger than a
wavelength, we can use the far field approxima-
tion to the Hankel function (equation (11.131)
of ref. (Arfken & Weber, 2001)), and G(r, r0) =
−

p
2π/(k|r− r0|) exp(i(k|r− r0| + π/4)). We use the

approximation (10) in the exponent and replace the dis-

tance |r− r0| in the denominator by r, so that

G(r, rA,B) = −
r

2π

kr
ei(kr∓kzR/2r+π/4) . (11)

The flux depends on the derivative of the Green’s func-
tion perpendicular to the screen. Retaining terms to first
order in R/r only in the exponent (consistent with ap-
proximations made earlier) gives

∂G(r, rA,B)

∂x
= − ikL

r

r
2π

kr
ei(kr∓kzR/2r+π/4) . (12)

When only the slit at rA is open, it follows from
expressions (3), (11), and (12) that the intensity flux
through the recording screen is given by

ΦA =
2π~L
m

Z ∞

−∞

1

r2
dz . (13)

According to figure 2, r = L/ cos θ and z = L tan θ,

hence
R∞
−∞ 1/r2dz = L−1

R π/2

−π/2
dθ = π/L and

ΦA = ΦB =
2π2~
m

. (14)

(Since the slits are identical, we have used that ΦA =
ΦB .)

When both slits are open, the response is given by
G(r, rA) + G(r, rB), and the far field expressions (11)
and (12) give

ΦAB =
4π~L
m

Z ∞

−∞


1

r2
+

cos(kzR/r)

r2

ff
dz . (15)

Expressing z and r as defined in figure 2 into the angle
θ, reduces the last integral toR∞

−∞
cos(kzR/r)

r2 dz = 1
L

R π/2

−π/2
cos(kR sin θ)dθ

= π
L
J0(kR) ,

(16)

where we used the integral representation given in ex-
pression (11.30) of ref. (Arfken & Weber, 2001) for the
zeroth order Bessel function J0 in the last identity. Ex-
pression (15) thus reduces to

ΦAB =
4π2~
m

{1 + J0(kR)} . (17)

Using this, and expression (14), gives

im

4π~
(ΦA + ΦB − ΦAB) = −iπJ0(kR)

= −iπIm
“
iH

(1)
0 (kR)

”
,

(18)

where we used the relation H
(1)
0 (x) =

J0(x) + iN0(x) (expression (11.85) of ref.
(Arfken & Weber, 2001)) in the last identity. From

expression (9), Im
“
iH

(1)
0 (kR)

”
= (−1/π)Im (G(R))=

(−1/2πi)(G(R) − G∗(R)), and using that
G(R) = G(rA, rB) reduces equation (18) to

im

4π~
(ΦA + ΦB − ΦAB) =

1

2
G(rA, rB) − 1

2
G∗(rA, rB) .

(19)
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Apart from a factor 1/2, the expression above is iden-
tical to the general equation (8). The factor 1/2 is due
the fact that the delta functions used to account for the
diffraction through the slits radiate in both directions,
while the slits only radiate energy to the right. Note that
expression (19) is based on the far field approximations
(11)-(13), yet it gives the exact Green’s function, even
when the slits are in each other’s near field (kR = O(1)).

The dual slit example shows explicitly that the
Green’s function that accounts for wave propagation be-
tween two slits is related to the differences of the par-
ticle flux measured at a screen when each slit is open
at a time and when both slits are open. In the latter
case the waves radiated by the slits interfere, and it
is the imprint of this interference on the intensity flux
that leads to the Green’s function that accounts for the
propagation between the slits.

4 ACOUSTICS

The treatment of section 2 for the Schrödinger equation
can be extended to acoustic waves. The equation of mo-
tion and the constitutive equation for acoustic waves are
given by

ρ
∂v

∂t
= −∇p , κ

∂p

∂t
= −(∇ · v) +

∂q

∂t
, (20)

where ρ is the mass-density, v the particle velocity,
κ the compressibility, p the pressure, and q the in-
jection source. Both κ and ρ can be arbitrary func-
tions of space. Using the Fourier convention f(t) =R
F (ω) exp(−iωt)dω these equations correspond in the

frequency domain to

∇p− iωρv = 0 , (21)

and

(∇ · v) − iωκp = −iωq . (22)

We derive an expression for the energy current by
forming the combination v∗(E21)+p(E22)∗+v(E21)∗+
p∗(E22), where (E22)∗ denotes, for example, the com-
plex conjugate of equation (22). Forming this combina-
tion, integrating over volume and applying Gauss’ law
gives

− 4i

ω

I
∂V

J · dS =

Z
V

{q∗p− qp∗} dV , (23)

where J is the energy current density
(Morse & Ingard, 1968)

J =
1

4
(pv∗ + p∗v) . (24)

Associated with this energy density current is a total
energy flux Φ =

H
∂V

J · dS through ∂V , and equation
(23) reduces to the counterpart of expression (4)

− 4i

ω
Φ =

Z
V

{q∗p− qp∗} dV , (25)

The same three experiments shown in figure 1 can be
applied to acoustic waves, and using the reasoning that
led to equation (8) gives for acoustic waves

G(rA, rB)−G∗(rA, rB) =
2i

ω
(ΦA + ΦB − ΦAB) . (26)

This means that for acoustic wave the Green’s function
that accounts for wave propagation between rA and rB

can be constructed by measuring the acoustic energy
fluxes through ∂V for the three source configurations of
figure 1. Just as in the quantum mechanical case the full
Green’s function, including the phase, can be found by
measuring fluxes for three different experiments.

5 COMPLICATIONS

In practice the amplitude and phase of the sources at rA

and rB may differ. Consider the case where the source
at rA has a phase difference ϕ and relative amplitude
A compared with the source at rB . In that case the
source at rA is given by q(r) = A exp(iϕ)δ(r− rA), and
the associated field is A exp(iϕ)G(r, rA). The source at
rB and its related field are unchanged. Repeating the
derivation leading to expression (8) gives in this case

{G(rA, rB) −G∗(rA, rB)}A cosϕ

=
im

4π~
(ΦA + ΦB − ΦAB) .

(27)

A phase shift and amplitude difference between the
sources at rA and rB thus only gives an overall ampli-
tude change. Note that when the sources are 90 degrees
out off phase (ϕ = ±π/2) the left hand side of expression
(27) vanishes, in that case the Green’s function retrieval
breaks down.

Note that it is not necessary to know the phase of
the sources, and that we did not assume that the phase
of the sources in the three experiments of figure 1 is
identical. The method proposed here only requires that
the sources have a constant phase difference ϕ. This
means that when one averages over a long time or over
an ensemble, as one does in practice, the sources need
not be coherent in time, as long as their phase difference
is constant. We illustrate in section 3 how this can be
achieved using a screen with holes.

In experiments the source at rA may not be a point
source, but a finite source distribution q(r) = S(rA − r)
centered at rA. In that case ψ(r) =

R
G(r, r′)S(rA −

r′)dV ′, the right hand side of equation (4) con-
tains

R
q∗(r)ψ(r)dV =

R R
S∗(rA − r)G(r, r′)S(rA −

r′)dV dV ′. Suppose that the source at rB is given by
the same distribution S(rB − r), but now centered at
rB . Repeating the derivation of section 2 then givesR R

S∗(rA − r) (G(r, r′) −G∗(r, r′))S(rB − r′)dV dV ′

=
im

4π~
`
ΦS

A + ΦS
B − ΦS

AB

´
,

(28)
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Figure 3. Comparison of the traditional method for Green’s

function extraction (Wapenaar et al., 2005) from random
sources (right panel), with the method for Green’s function

extraction proposed in this work (left panel). Sources are

denoted by stars, receivers by circles.

where ΦS denotes the flux generated by the sources S.
In this case a double convolution of the Green’s function
with the source function is obtained. By deconvolution
one can, in principle, obtain G − G∗. In practice this
may not be possible for all frequencies, in that case one
can only obtain a band-limited version of G−G∗. Note
that equation (28) only holds when the sources centered
around rA and rB are identical, as is the case when using
identical holes or slits in a screen.

6 DISCUSSION

The theory here provides a method to obtain the
phase and amplitude of the Green’s function for the
Schrödinger equation from measurements of the inte-
grated intensity flux through a closed surface surround-
ing two sources. Note that the theory holds for an arbi-
trary real potential V (r). The example of the two-slit ex-
periment of section 3 shows that two slits, or pin-holes,
in a screen can be used as sources for the method de-
scribed here. As shown in equation (27) the used sources
need not be in phase, and their amplitudes may be dif-
ferent.

The method for Green’s function extraction is
based on the subtraction of expectation values for an
arbitrary operator O

〈ψA + ψB |O|ψA + ψB〉 − 〈ψA|O|ψA〉 − 〈ψB |O|ψB〉 =

〈ψA|O|ψB〉 + 〈ψB |O|ψA〉 ,
(29)

which follows from the bilinear properties of the expec-
tation value. Note that the right hand side only con-
tains cross-terms of the two states ψA and ψB , hence
the subtraction selects interference terms between the
two states. Similarly, the right hand side of (8) gives
cross-terms proportional to CAB − C∗AB with

CAB =

I
∂V

(G(r, rA)∇G∗(r, rB)

−G∗(r, rB)∇G(r, rA)) · dS .

(30)

This integral has the same form as the integral used
in Green’s function extraction for acoustic waves

(expression (9) of ref. (Wapenaar et al., 2005)), ex-
cept that in equation (30) the Green’s function has
arguments G(r, rA,B) whereas in traditional Green’s
function extraction the integrand depends on G(rA,B , r)
(Wapenaar et al., 2005). The integral (30) corresponds
to the situation shown in the left panel of figure 3 where
the flux of the field excited by sources at rA and rB

is measured at locations r at ∂V . In Green’s function
extraction, as shown in the right panel of figure 3,
one cross-correlates the fields measured at locations
rA and rB that are excited by uncorrelated sources
at locations r on the surface (Wapenaar et al., 2005).
Because of reciprocity these two cases are identical.
It was recognized earlier (Curtis et al., 2009) that
cross-correlation methods can yield the waves that
propagate between sources. In this work we generalize
this principle to obtain the Green’s function from
measurements of the integrated intensity flux.
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