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Figure 1. Least-squares migration images computed for a laterally invariant velocity model by minimizing the (a) di↵erence
between predicted and observed data, and (b) di↵erence between predicted and shifted observed data. Compared to the (c)

image computed for an optimized velocity model by minimizing the di↵erence between predicted and observed data, the image
in (b) contains similar features despite the use of a much simpler velocity model during migration.

ABSTRACT
Seismic migration requires an accurate background velocity model that cor-

rectly predicts the kinematics of wave propagation in the true subsurface. Least-

squares migration, which seeks the inverse rather than the adjoint of a forward

modeling operator, is especially sensitive to errors in this background model,

which can result in traveltime di↵erences between predicted and observed data

that lead to incoherent and defocused migration images. We propose an alterna-

tive misfit function for use in least-squares migration that measures amplitude

di↵erences between predicted and observed data, i.e., di↵erences after correcting

for nonzero traveltime shifts between predicted and observed data. We demon-

strate on synthetic and field data that, when the background velocity model

is incorrect, the use of this misfit function results in better focused migration

images with greater amplitude fidelity. Results suggest that our method best

enhances image focusing when di↵erences between predicted and observed data

can be explained by traveltime shifts.

1 INTRODUCTION

Seismic migration can be described as the adjoint of
a linearized forward modeling operator applied to ob-
served data (Claerbout, 1992). Migration produces a
reflectivity image, an image of a perturbation to the
background velocity model (Cohen and Bleistein, 1979),
that approximates the true reflectivity insofar as the
adjoint of the forward operator approximates the pseu-
doinverse. Typically, the adjoint is a poor approxima-
tion, and the accuracy of the computed reflectivity im-
age can be significantly improved by using the pseudoin-
verse of the forward operator rather than the adjoint.
The use of the pseudoinverse of the forward operator in
migration is known as least-squares migration (Nemeth

et al., 1999; Østmo and Plessix, 2002; Plessix and Mul-
der, 2004; Kühl and Sacchi, 2003; Dai, 2012).

Least-squares migration requires the inverse of the
Hessian matrix (the normal operator) of second deriva-
tives of a misfit function with respect to model param-
eters. The Hessian, however, is prohibitively expensive
to compute and store for most practical-sized problems.
Approximations of the inverse Hessian (Gray, 1997;
Chavent and Plessix, 1999; Shin et al., 2001; Rickett,
2003; Guitton, 2004; Plessix and Mulder, 2004; Valen-
ciano, 2008; Symes, 2008) are more feasible, and are of-
ten used to improve the quality of final migration images
or to precondition iterative least-squares migration. In
this paper, we focus on iterative least-squares migration,
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Figure 2. A simple example. The (a) predicted data (black) and observed data (red); (b) predicted data (black) and shifted

observed data (blue); (c) normalized misfit function computed with the predicted and observed data shown in (a); and (d)
normalized misfit function computed with the predicted and shifted observed data shown in (b). A local optimization method

beginning at the position indicated by the white circle will converge to a local minimum in (c), but will find the global minimum,
indicated by the magenta star, in (d).

which can be used in conjunction with or in place of ap-
proximations of the Hessian. An advantage of iterative
migration algorithms is that they typically are straight-
forward to implement; a disadvantage is that they can
be more computationally expensive compared to an ef-
ficient approximation of the Hessian, or compared to a
single application of the adjoint operator as is done, for
example, in reverse-time migration (Baysal et al., 1983;
Loewenthal and Mufti, 1983; McMechan, 1983; Whit-
more, 1983; Levin, 1984).

The quality and accuracy of migration images de-
pends greatly on the accuracy of the background ve-
locity model, and errors in this background model can
lead to an incoherent, defocused image. Ideally, the
background velocity model should correctly predict the
traveltimes of observed data, and should be su�ciently
smooth so as not to generate reflected waves. These re-
quirements derive from the conditions under which the
Born approximation is valid (Symes, 2009), and under
these conditions, migration can accurately image sub-
surface structures. However, when these conditions are
violated, migration images are degraded and become
defocused and incoherent. One reason for this degra-
dation is that migration inverts for the perturbation to
the background velocity model that controls only the
amplitudes of predicted data; if the background model
contains errors, then the predicted data will contain er-
rors in both traveltime and amplitude compared to the
observed data, and both these types of errors — instead
of only the amplitude errors — will contribute to the
migration image.

Often, separating these types of errors, and per-
haps discarding a certain type of error, can improve

inversion results. For example, for full waveform inver-
sion (Tarantola, 1984; Pratt et al., 1998), authors ad-
vocate using only phase or traveltime information (Shin
and Min, 2006; Bednar et al., 2007; Choi and Alkhali-
fah, 2011; Kamei et al., 2011), especially to update the
low-wavenumber background model that is di�cult for
full waveform inversion to recover from reflection seis-
mic data (Snieder et al., 1989; Hicks and Pratt, 2001;
Xu, 2012; Ma, 2012). Our task in least-squares migra-
tion is complementary to that of full waveform inver-
sion for the background model: we seek to invert for
the high-wavenumber component of the model, i.e., the
perturbation to the background model. Thus, analogous
to the use of phase or traveltime information to recover
the low-wavenumber component of the velocity model,
we propose to use amplitude information to recover the
high-wavenumber component.

The utility of this amplitude and traveltime separa-
tion is easily illustrated. Consider the task of estimating
a traveltime shift and an amplitude scale between two
1D signals, shown in Figure 2. In Figures 2a and 2b, the
black curve represents the predicted data, the red curve
represents the observed data, and the blue curve rep-
resents the observed data shifted so that its traveltime
matches that of the predicted data. The conventional
least-squares misfit function, i.e., the L2-norm of the
di↵erence between predicted and (possibly shifted) ob-
served data, for two model parameters (the amplitude
scale and the traveltime shift) is shown in Figures 2c
and 2d. Notice in Figures 2c and 2d the location of the
global minimum, indicated by the magenta star. Fig-
ure 2c shows the normalized misfit function computed
between predicted and observed data (Figure 2a). With
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this misfit function, a local optimization method begin-
ning at the location of the white circle will descend to a
local minimum, indicated by the white arrow. In com-
parison, the normalized misfit function computed be-
tween predicted and shifted observed data (Figure 2b)
shown in Figure 2d enables the global minimum to be
found.

This simple example suggests that by first correct-
ing for traveltime shifts between predicted and observed
data, we are better able to estimate the component of
the model that controls the amplitude (in this case, the
amplitude scale). This is the approach we wish to pur-
sue for the more complicated problem of least-squares
migration. The simple example relied on the fact that
we could correctly estimate the traveltime shift between
predicted and observed data. For migration, we require
an accurate and robust method for estimating travel-
time shifts between two (not necessarily 1D) signals,
and for this purpose we use dynamic warping (Hale,
2013).

We propose a simple modification of the conven-
tional least-squares misfit function used in iterative
least-squares migration. Rather than minimize the dif-
ference between predicted and observed data, we pro-
pose to minimize their di↵erence after correcting for
nonzero traveltime shifts. Assuming estimated travel-
time shifts between predicted and observed data are
accurate, this misfit function quantifies mostly ampli-
tude di↵erences. We demonstrate that the use of this
amplitude misfit function in least-squares migration re-
sults in more coherent and better focused images when
the background velocity model used for migration di↵ers
from the true background velocity model.

2 METHODS

In this section, we first briefly review linearized wave-
form inversion and then discuss dynamic warping, the
method we use to estimate traveltime shifts, before pre-
senting our method for amplitude-only inversion.

2.1 Linearized waveform inversion

Wave propagation in the subsurface is described approx-
imately by the constant-density acoustic wave equation,

�0
@2u0

@t2
��u0 = f , (1)

where u0 is the wavefield, �0 is the squared background
slowness, and f is the source function. Perturbing �0 by
a scattering potential m and linearizing about m yields
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where u is the scattered or perturbation wavefield. Often
m is referred to as the reflectivity model or simply the
reflectivity.

Let us denote the discretized solution of equation 2
for a source function at position s. The wavefield us is
linear in the reflectivity m:

us = Lsm , (3)

where Ls is a linear prediction operator describing the
evolution of the scattered wavefield in equation 2. The
predicted data ps,r are a subset of the wavefield us:

ps,r = Srus , (4)

where Sr is a sampling operator that extracts the wave-
field at receiver position r.

To solve equation 4 for the reflectivity model m,
we minimize, in a least-squares sense, the di↵erence be-
tween predicted data ps,r and observed data ds,r:

min
m

J(m) =
X

s,r

Es,r(us(m)) , (5)

where

Es,r(us) =
1
2
kSrus � ds,rk2 . (6)

To minimize equation 5, we can pursue the negative of
the gradient direction

@J
@m

=
X

s,r

LT
s

✓
@Es,r

@us

◆
, (7)

where

@Es,r

@us
= ST

r (Srus � ds,r) (8)

is the data residual. The adjoint of the prediction oper-
ator Ls is a migration operator (Claerbout, 1992), and
so we obtain the well-known result (Lailly, 1983; Taran-
tola, 1984) that the gradient of the least-squares misfit
function can be computed by a migration of the residu-
als.

2.2 Dynamic warping

Before we can consider an amplitude misfit function, we
require a method for estimating time-varying traveltime
shifts between predicted and observed data. For this
purpose, we use dynamic warping (Hale, 2013). Com-
pared to more conventional methods for estimating trav-
eltime shifts based on windowed crosscorrelations, dy-
namic warping is more accurate, especially when trav-
eltime shifts vary rapidly as a function of time (Hale,
2013).

Dynamic time warping (Sakoe and Chiba, 1978)
is a method for computing integer time shifts
⌧ = (⌧1, ⌧2, · · · , ⌧n) between two sequences p =
(p1, p2, · · · , pn) and d = (d1, d2, · · · , dn) such that

A =
1
2

X

i

(pi � di+⌧i)
2 (9)
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is minimized with respect to ⌧ subject to the constraint

|⌧i � ⌧i�1|  1/c , (10)

where c is a positive integer. An attractive feature of dy-
namic time warping is that the algorithm is guaranteed
to find the traveltime shifts ⌧ that minimize equation 9
subject to constraint 10, and these shifts are such that
@A/@⌧ = 0 when the constraint is inactive.

Although we could use dynamic time warping to in-
dependently estimate traveltime shifts between all pairs
of predicted and observed traces, in practice we find
that using dynamic image warping (Hale, 2013) to esti-
mate traveltime shifts between predicted and observed
common shot gathers yields more accurate shifts, espe-
cially when predicted and observed data are not sim-
ply shifted versions of each other (as is often the case
even with synthetic data, and certainly always is the
case with recorded field data). Dynamic image warp-
ing (Hale, 2013) approximately solves the extension to
higher dimensions of the constrained optimization prob-
lem specified by equations 9 and 10, and in doing so, im-
poses constraints both in time (equation 10) as well as
in distance or o↵set on the estimated traveltime shifts.

2.3 Inversion of amplitude errors

To formulate an inversion of amplitude errors, we mod-
ify the observed data to include a time-shift operator:

bs,r = Ts,rds,r , (11)

where Ts,r is a linear operator, e.g., a sinc interpola-
tion operator, that shifts the observed data ds,r by the
traveltime shifts ⌧ s,r estimated using dynamic warping.
Note that Ts,r depends implicitly on the model m, be-
cause the traveltime shifts ⌧ s,r are computed using the
predicted data ps,r, which depend on the model.

The shifted observed data bs,r can be viewed as a
secondary dataset obtained by processing the observed
data. Processing of the observed data prior to migra-
tion is standard practice, even for conventional migra-
tion. The purpose of this processing is essentially to
remove from the observed data any components that
are due to an inconsistent model of wave propagation
in the true subsurface. For example, in order to use
acoustic forward modeling to migrate elastic data, one
would need to remove shear waves from observed data
prior to migration. Just as an acoustic wave equation
cannot explain shear waves in observed data, the lin-
earized wave equation (equation 2) with an incorrect
background model cannot explain the traveltimes of ob-
served data. Migration using an incorrect background
model is equivalent to migration using forward model-
ing that is inconsistent with the observed data, and so to
properly migrate these data, we must first remove those
components that cannot be explained by our forward
modeling. Those components are the traveltimes.

Thus, we seek to minimize the di↵erence between

predicted data ps,r and time-shifted observed data bs,r:

min
m

JA(m) =
X

s,r

As,r(us(m), ⌧ s,r(m)) , (12)

where

As,r =
1
2
kSrus �Ts,rds,rk2 . (13)

Note that if the estimated traveltime shifts ⌧ s,r are ac-
curate, then equation 12 measures only amplitude errors
between predicted and observed data. If the traveltime
shifts are zero, then equation 12 reduces to equation 5.

To minimize the misfit function in equation 12, we
require its gradient with respect to model parameters:
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where

@As,r

@us
= ST

r (Srus �Ts,rds,r) . (15)

Although As,r depends on the estimated traveltime
shifts ⌧ s,r, we need not consider this dependence when
computing the residual in equation 15 because dynamic
warping minimizes equation 13 (or equation 9) subject
to constraint 10, so that @As,r/@⌧ s,r is mostly zero.
We refer to equation 15 as the amplitude residual and
equation 12 as the amplitude misfit function, as they
measure only amplitude errors between predicted and
observed data.

3 RESULTS

We compare conventional least-squares migration
(LSM) with the proposed method of least-squares mi-
gration of amplitude errors (LSMA) on a 2D synthetic
dataset, and on a 2D field dataset.

For least-squares migration, the data are linear in
the reflectivity, and thus LSM images can be computed
by minimizing equation 5 with (linear) conjugate gra-
dient iterations. To compute LSMA images by solving
equation 12, however, is a nonlinear problem because
the reflectivity m depends on the traveltime shifts ⌧ s,r,
but the traveltime shifts also depend on the reflectiv-
ity. We can compute LSMA images either by minimiz-
ing equation 12 using a gradient-based descent method
(e.g., steepest descent or nonlinear conjugate gradient),
or alternatively, by first solving equation 12 with fixed
traveltime shifts ⌧ s,r, then recomputing the traveltime
shifts and solving equation 12 with the new shifts, re-
peating until convergence.

Note that when the traveltime shifts ⌧ s,r are zero,
equation 12 is equivalent to equation 5. This is the case
for the first nonlinear iteration or the first solution of
equation 12 with fixed ⌧ s,r, in which the reflectivity is
zero and hence the traveltime shifts are zero. After the
first nonlinear iteration or the first solution of equa-
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Figure 3. The (a) true slowness model, (b) true background slowness model, (c) true reflectivity computed as the di↵erence

between the true slowness squared and the true background slowness squared, and (d) LSM image.

Figure 4. The (a,b) di↵erence between the true background slowness shown in Figure 3b and the background slowness used
for migration; (c) LSM image computed for the background slowness with error shown in (a); (d) LSM image computed for the

background slowness with error shown in (b); (e) LSMA image computed for the background slowness with error shown in (a);
and (f) LSMA image computed for the background slowness with error shown in (b).
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a)

b)

c)

Figure 5. Zoomed views of the areas enclosed by yellow
boxes in the (a) LSM image in Figure 4c, (b) LSMA image

in Figure 4e, and (c) true reflectivity in Figure 3c.

tion 12, we obtain a nonzero reflectivity image from
which to predict data and to estimate possibly nonzero
traveltime shifts.

3.1 Synthetic data example

The background slowness used for modeling and migra-
tion is shown in Figure 3b, and is computed by smooth-
ing a modified Marmousi model (Lailly and Versteeg,
1990) shown in Figure 3a along both the depth and
distance axes using a two-sided exponential filter with
width 100 m. The true reflectivity shown in Figure 3c is
then computed as the di↵erence between the true slow-
ness (Figure 3a) squared and the true background slow-
ness (Figure 3b) squared. Using the true background
slowness and true reflectivity, we simulate observed data
by solving equations 1 and 2 for a Ricker source func-
tion with peak frequency 10 Hz. To facilitate compari-
son of LSM and LSMA, all migration images for these
synthetic data are computed using 20 nonlinear conju-
gate gradient iterations. Hence, as the cost of dynamic
warping is small compared to the cost of modeling and
migration, the LSM and LSMA images computed for
these synthetic data come at comparable costs.

The first example shown in Figure 3 demonstrates
conventional LSM using the true background slowness

a)

b)

c)

Figure 6. Zoomed views of the areas enclosed by green boxes

in the (a) LSM image in Figure 4d, (b) LSMA image in Fig-
ure 4f, and (c) true reflectivity in Figure 3c.

for migration. The reflectivity image shown in Figure 3d
is obtained after 20 nonlinear conjugate gradient iter-
ations (Nocedal and Wright, 2000) of LSM using the
true background slowness with 153 shots and 767 re-
ceivers evenly spaced along the surface. As expected,
this computed reflectivity matches well the true reflec-
tivity shown in Figure 3c because the background slow-
ness model used for migration was exactly the true back-
ground slowness. In practice, we expect the background
slowness model used to migrate the data to di↵er from
the true background slowness model.

Figure 4 illustrates the e↵ects of erroneous back-
ground slowness models on the reflectivity images ob-
tained using LSM and LSMA. Figures 4a and 4b show
the di↵erences between the true background slowness
model (Figure 3b) and the background slowness models
that we use for migration. The slowness error shown in
Figure 4a was computed by smoothing a random slow-
ness model, while the error shown in Figure 4b resulted
from scaling the true background slowness by 95%.

Figures 4c and 4d show the reflectivity images com-
puted using 20 iterations of LSM with the erroneous
background slowness models with errors shown in Fig-
ures 4a and 4b, respectively. Compared to the reflec-
tivity image (Figure 3d) computed using the true back-
ground slowness, the image in Figure 4c is degraded, and
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Figure 7. Normalized (a) data and amplitude misfit and (b) model misfit for LSM and LSMA. Here, true background refers

to the true background slowness shown in Figure 3b, while incorrect background refers to the background slowness with error
shown in Figure 4a.

Figure 8. Normalized (a) data and amplitude misfit and (b) model misfit for LSM and LSMA. Here, true background refers

to the true background slowness shown in Figure 3b, while incorrect background refers to the background slowness with error
shown in Figure 4b.

shows uneven illumination and defocused reflectors, es-
pecially at greater depths where traveltime errors result-
ing from the erroneous background slowness are more
severe. This degradation is also seen in the reflectivity
image shown in Figure 4d. The quality of this image is
worse than the image shown in Figure 4c because the
slowness errors (Figure 4b) all have the same sign, and
so traveltime errors in the predicted data accumulate
more quickly than traveltime errors for data predicted
with the slowness model with error shown in Figure 4a.

Figures 4e and 4f show the reflectivity images com-
puted with 20 iterations of LSMA. Compared to the
conventional LSM images (Figures 4c and 4d), the
LSMA images show improved illumination of deeper
portions of the model, and better focused and more con-
tinuous reflectors throughout. For example, Figures 5a,
5b, and 5c show zoomed views of the areas enclosed
by yellow boxes in Figures 4c, 4e, and 3c, respectively.
Compared to the LSM image shown in Figure 5a, reflec-

tors in the LSMA image shown in Figure 5b are more
focused and better match the true reflectivity shown
in Figure 5c. Similarly, zoomed views shown in Fig-
ures 6a, 6b, and 6c of the areas enclosed by green boxes
in Figures 4d, 4f, and 3c, respectively, demonstrate that
even for a large and biased slowness error (Figure 4b),
minimizing the amplitude misfit function yields an in-
terpretable reflectivity image with features that match
those apparent in the true reflectivity.

Note, however, that the positions of features in
LSMA images (Figures 4e and 4f) are shifted compared
to their positions in the true reflectivity (Figure 3c). For
example, compare the position of the reflector located
at distance 3.5 km and depth 1 km in Figure 5b, or
the reflector located at distance 4.5 km and depth 1 km
in Figure 6b, to their positions in the true reflectivity
This mispositioning is expected, however, since LSMA
images are computed using erroneous background slow-
ness models.
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The presence of remaining traveltime shifts between
predicted and observed data, as well as spatial shifts
between image features in computed LSMA images and
those in the true reflectivity, is confirmed by the misfit
functions shown in Figures 7 and 8. Figures 7a and 8a
show normalized data and amplitude misfit functions,
while Figures 7b and 8b show normalized model mis-
fit functions (the L2-norm of the di↵erence between the
computed reflectivity and the true reflectivity) for LSM
and LSMA images computed using either the true back-
ground slowness model shown in Figure 3b or the erro-
neous background slowness model with error shown in
Figure 4a or Figure 4b. In Figures 7a and 8a, note that
the data misfit is not used in LSMA, but more impor-
tantly, notice that the data misfit increases in iteration 7
in Figure 7a and in iteration 2 in Figure 8a. This indi-
cates that the better-focused LSMA images shown in
Figures 4e and 4f cannot be obtained with conventional

LSM, which minimizes the data misfit.
The model misfits shown in Figures 7b and 8b indi-

cate that, for the erroneous background slowness mod-
els shown in Figures 4a and 4b, the LSM images (Fig-
ures 4c and 4d) more closely match the true reflectiv-
ity (Figure 3c) than do the LSMA images (Figures 4e
and 4f). Indeed, a zero-reflectivity image is closer to the
true reflectivity than the LSMA image shown in Fig-
ure 4f. However, the large model misfits for LSMA im-
ages simply reflect the fact that features in these images
are shifted relative to the corresponding features in the
true reflectivity. Although image features in LSMA im-
ages are shifted, it is clear that the amplitudes (but not
the positions) of these features better match those of
the true reflectivity.

3.2 Field data example

Next we test our method for amplitude-only migration
on a subset of a field dataset provided by Eni E&P.
The entire 2D dataset contains 3661 shots with a shot
spacing of 12.5 m, and was recorded using a streamer
with 99 receivers with a receiver spacing of 12.5 m and
maximum o↵set of 1.225 km. The subset of the data
that we migrate consists of 431 shots with shot spacing
of 25 m. The data have been regularized, and multiples
have been attenuated. We estimate a zero-phase wavelet
from the amplitude spectrum computed from a subset
of the recorded data (Claerbout, 1992), and we apply a
bandpass filter to both the estimated wavelet and the
recorded data to remove frequency content below 10 Hz
and above 40 Hz prior to migration.

We compare LSM and LSMA for two slowness mod-
els. The first slowness model, shown in Figure 9a, is lat-
erally invariant (except near the sea floor), while the
second, shown in Figure 9b, is an optimized slowness
model that was provided with the recorded data. The
LSM and LSMA images computed for the laterally in-
variant slowness model (Figure 9a) are shown in Fig-

Figure 9. The (a) laterally invariant and (b) optimized slow-
ness models used for migration, and the (c) di↵erence be-

tween (b) and (a).

ures 10a and 10b, respectively. Comparing these images,
we observe that reflectors in the LSMA image are more
continuous and better focused than corresponding re-
flectors in the LSM image. Moreover, image features
in the LSMA image (Figure 10b) are similar to fea-
tures seen in the LSM image (Figure 10c) computed
for the optimized slowness model (Figure 9b), despite
the use of a much simpler slowness model for LSMA.
Di↵erences between the migration images shown in Fig-
ures 10a and 10b are most apparent in the areas en-
closed by yellow boxes, in which the slowness di↵erences
(Figure 9c) between the models used for migration are
relatively large. Zoomed views of the areas enclosed by
yellow boxes in Figures 10a, 10b, and 10c are shown in
Figures 1a, 1b, and 1c, respectively. Elsewhere, where
slowness errors are smaller, di↵erences between the mi-
gration images are less significant, as one would expect.

It is worth noting that, for this example, it was
necessary to use 3D dynamic warping in LSMA. For
3D warping, rather than independently warp predicted
to observed shot gathers as was done for the synthetic
examples shown in Figure 4, we instead warped simul-
taneously all predicted shot gathers to all observed shot
gathers, at each iteration of LSMA. A 3D warping en-
ables us to constrain changes in estimated traveltime
shifts with shot location, which results in more accu-
rate shifts. For synthetic tests in which the same for-
ward modeling code is used to simulate both predicted
and observed data, this additional constraint is per-
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Figure 10. The (a) LSM image and (b) LSMA image computed for the laterally invariant slowness model shown in Figure 9a,

and the (c) LSM image computed for the optimized slowness model shown in Figure 9b.
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Figure 11. For the shot located at distance 1.85 km, the (a) observed data, (b) predicted data computed using the laterally
invariant slowness model shown in Figure 9a and the LSMA image shown in Figure 10b, and (c) traveltime shifts between (a)

and (b).

haps unnecessary. For field data, however, an additional
constraint on the traveltime shifts can significantly im-
prove the accuracy of estimated shifts, especially in
cases where the data quality is low.

Because we compute LSMA images by minimizing
the di↵erence between predicted and shifted observed
data (equation 12), the predicted data in general will
not have the same traveltimes as the original observed
data. An example of these traveltime di↵erences for data
corresponding to the shot located at distance 1.85 km is
shown in Figure 11. Figure 11a shows the observed data,
Figure 11b shows the predicted data computed using the
laterally invariant slowness model (Figure 9a) and the
LSMA image (Figure 10b), and Figure 11c shows the
traveltime shifts between the data shown in Figures 11a
and 11b. The maximum frequency content of the data is
40 Hz, which corresponds to a period of 25 ms. Thus we
observe from Figure 11c that the remaining traveltime
shifts between predicted and observed data exceed one
half period. This confirms that LSMA yields an image
that explains the dynamics, but not the kinematics, of
the observed data.

4 CONCLUSION

We have presented a method for least-squares migra-
tion that minimizes an amplitude misfit function defined
with di↵erences between predicted data and shifted ob-
served data, with traveltime shifts between predicted
and observed data estimated using dynamic warping.
The use of this amplitude misfit function results in a
more coherent and better focused migration image when
the background slowness model used for migration con-
tains errors. These LSMA images contain image features
with amplitudes that match those of the true reflectiv-
ity, but with positions that are shifted relative to the po-
sitions of corresponding features in the true reflectivity.
LSMA images thus are better suited for interpretation
of geologic structures, but in order to correctly position

interpreted structures, we would need to first correctly
position LSMA image features. One way to correct for
the mispositioning of image features is to first align fea-
tures with measurements of subsurface properties ob-
tained from well logs, and then interpolate alignment
shifts between well-log locations to generate shifts for
an entire image.

The improvement in LSMA images compared to
conventional LSM images depends on the nature of the
background slowness error, and also on the acquisition
geometry. A comparison between the images shown in
Figure 4e and 4f suggests that LSMA provides a greater
improvement in image quality and reflector focusing for
small, systematic errors in background slowness (e.g.,
Figure 4b), perhaps because in such situations, travel-
time shifts can explain well the di↵erences between pre-
dicted and observed data. When the background slow-
ness error is more complex or is too large, predicted and
observed data might be inconsistent, i.e., events in one
dataset do not have corresponding events in the other,
making it di�cult to estimate accurate shifts; or, pre-
dicted and observed data might di↵er by significant hor-
izontal spatial shifts in addition to vertical traveltime
shifts, in which case estimating only traveltime shifts
for use in LSMA might be inadequate. While dynamic
warping can also be used to estimate horizontal shifts,
only vertical traveltime shifts were used in the examples
shown above.

The improvement in LSMA images also depends
on acquisition geometry. Traveltime di↵erences between
observed and predicted data in LSM arise from errors
in the background slowness model used for migration,
but more specifically, they arise from inconsistencies be-
tween di↵erent images of the same subsurface geologic
structures, e.g., images computed for neighboring indi-
vidual shots. Thus, we expect LSMA to provide greater
improvement over conventional LSM when the recorded
data provide redundant information about subsurface
geologic structures. Conversely, we expect LSMA and
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LSM images to be more similar when data provide in-
dependent information, for example, when shots are
sparsely located or shot spacing is large, or when the
maximum source-receiver o↵set or the o↵set-to-depth
ratio is small.

Although LSMA images can provide an improved
estimate of the amplitudes of the true reflectivity, ul-
timately we seek a complete model of the subsurface,
which includes not only an accurate reflectivity model
but also an accurate background slowness model. The
proposed method could potentially be extended and
used to aid an inversion for the background slowness. A
simple approach might be to hold the reflectivity model
constant following LSMA, and then invert the remaining
traveltime shifts between predicted and observed data
in order to update the background slowness.
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