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ABSTRACT

Conventional prestack time-migration velocity analysis is designed to estimate
diffraction time functions in a fixed azimuthal direction from narrow-azimuth
reflection data. Therefore, it can build accurate 3D migration operators only if
the subsurface is isotropic (or azimuthally isotropic) and laterally homogeneous.
Here, we extend time-migration methodology to multi-azimuth or wide-azimuth
data from azimuthally anisotropic, weakly heterogeneous media.
We derive the azimuthally varying diffraction time function from the most gen-
eral form of Hamilton’s principal equation and apply a Taylor series expansion to
the traveltime in the vicinity of the image ray. This approach helps to relate the
Taylor series coefficients to the corresponding multi-azimuth imaging parame-
ters. The second-order coefficients, which define the “migration-velocity ellipse,”
are obtained from time-migration velocity analysis in at least three distinct
azimuthal directions. Our multi-azimuth prestack time migration (MAPSTM)
solves the mismatch problem that occurs in conventional processing when the
same depth point creates different time images in different azimuths. The al-
gorithm is successfully tested on synthetic data for a horizontally layered az-
imuthally anisotropic model and an isotropic medium with a dipping interface.

Key words: time migration, velocity analysis, azimuthal anisotropy, NMO
ellipse, image ray, multi-azimuth surveys.

1 INTRODUCTION

Conventional prestack time-migration operators are de-
rived from analytic diffraction time functions. The
diffraction times for any source and receiver position
are defined solely by a single average velocity (i.e., the
RMS velocity) at the image point instead of the true ve-
locity field above the reflector. The time-migration ve-
locity is obtained by focusing analyses on prestack time-
migrated gathers. This approach generally proved to be
robust for narrow-azimuth 2D and 3D seismic data, par-
ticularly when the subsurface is not structurally com-
plex.

However, the limitations of the conventional time-
migration methodology have become obvious with the
advent of multi-azimuth and wide-azimuth seismic sur-
veys. The most important advantages of multi-azimuth

data acquisition are improved noise suppression, mul-
tiple attenuation and target illumination (Manning
et al., 2007); wide azimuthal coverage can also help in
anisotropic parameter estimation. As discussed by Keg-
gin et al. (2007), one of the the biggest problems in con-
ventional processing of multi-azimuth data is that sum-
mation of signals acquired at different azimuths does
not account for traveltime differences due to azimuthal
anisotropy and/or lateral velocity variation.

Time imaging for orthorhombic symmetry, which
adequately describes fracture-induced azimuthal
anisotropy, is discussed by Grechka & Tsvankin
(1999). They show that all P-wave time processing
steps (normal-moveout and dip-moveout corrections,
prestack and poststack time migration) for a laterally
homogeneous orthorhombic medium above a dipping
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reflector are controlled by the orientation of the vertical
symmetry planes, the symmetry-plane normal-moveout
(NMO) velocities from a horizontal interface [V

(1,2)
nmo ]

and three anellipticity parameters
h

η(1,2,3)
i

. The

velocities V
(1,2)
nmo and the symmetry-plane azimuth can

be found using the NMO ellipse (Grechka & Tsvankin,
1998) of a horizontal event. Then the NMO ellipse from
a dipping reflector is used to estimate the parameters
η(1,2,3) responsible for the dip-dependence of normal
moveout. Alternatively, it is possible to obtain η(1,2,3)

from azimuthally varying nonhyperbolic moveout
in a horizontal orthorhombic layer (Vasconcelos &
Tsvankin, 2006).

Note that the simpler HTI (transversely isotropic
with a horizontal symmetry axis) medium represents a
special case of orthorhombic symmetry. Therefore, the
time-migration operator in azimuthally anisotropic me-
dia can be built using solely P-wave reflection trav-
eltimes. This approach represents a generalization of
the widely used time-imaging methodology for verti-
cal transverse isotropy (VTI) based on the Alkhalifah-
Tsvankin (1995) parameter η (Tsvankin, 2005).

A time-migration algorithm that takes azimuthal
velocity variation into account is presented by Kappius
in Grechka et al. (2006). The NMO ellipse is recon-
structed from azimuthal moveout analysis or iteratively
applied azimuthal prestack time migration that pre-
serves offset and azimuth information. The author men-
tions the ambiguity in the azimuthal correction caused
by dipping structures and suggests to separate the con-
tributions of azimuthal anisotropy and dip during an it-
erative process of velocity analysis and imaging. Preser-
vation of the offset (source-receiver) vector information
during prestack time migration of wide-azimuth data is
further exploited by Calvert et al. (2008).

Azimuthally-dependent velocities estimated from
focusing analyses are used in time migration to handle
the influence of structure in laterally heterogeneous me-
dia (Söllner & Andersen, 2005). The authors employ the
surface-to-surface paraxial ray theory (Bortfeld, 1989;
Hubral et al., 1992) to introduce kinematic time mi-
gration that operates with azimuthally-varying NMO
velocities and zero-offset traveltime slopes, as well as
the corresponding demigration based on azimuthally-
varying time-migration velocities and slopes.

Here, starting from the generalized surface-to-
surface paraxial matrices (Moser & Červený, 2007), we
develop a multi-azimuth prestack time-migration algo-
rithm for arbitrarily anisotropic, weakly heterogeneous
media. Hamilton’s point characteristic for transmitted
rays helps to link the surface-to-surface paraxial matri-
ces to azimuthally varying time-migration velocities and
derive the time-migration operator. Focusing analysis
for the full range of available azimuths is used to esti-
mate the time-migration velocities, which are shown to
be generally different from NMO velocities. The migra-

tion operator can still be developed from the NMO el-
lipse, but only by including additional information pro-
vided by zero-offset time slopes.

2 METHODOLOGY

2.1 Surface-to-surface paraxial matrices

We consider a model comprised of a stack of heteroge-
neous, anisotropic layers separated by smooth interfaces
(Bortfeld, 1989; Hubral et al., 1992; Moser & Červený,
2007). Smoothness here means that each interface can
be locally represented by second-order polynomials. The
sources and receivers are located at the top interface
called the anterior (earth’s) surface. In the marine en-
vironment, this surface can be considered flat. The bot-
tom interface, called the posterior surface, represents
the reflector. A selected (“central”) ray travels from the
anterior to the posterior surface. The central ray inter-
sects the anterior surface at the origin (point P

0
) of a

Cartesian (x, y, z) coordinate system and the posterior
surface at the origin (P ′

0) of another Cartesian (x′, y′, z′)
coordinate system.

The plane tangent to the anterior surface at P
0

is
taken as the [x, y] plane of the (x, y, z) coordinate sys-
tem; the direction of the x- and y-axes in this plane
is arbitrary. The central ray can be described by four
three-component vectors: the initial position vector x̃0,
the initial slowness vector p̃0, the final position vector
x̃′

0, and the final slowness vector p̃′

0.
Likewise, an arbitrary ray propagating from point

P at the anterior surface may be described by the ini-
tial position (x̃) and slowness (p̃) vectors. The cor-
responding final vectors (x̃′ and p̃′) at the posterior
surface are measured in the (x′, y′, z′) Cartesian coor-
dinate system. The two-dimensional vectors x, p, x′,
and p′ are obtained by projecting the three-dimensional
position and slowness vectors onto the initial and fi-
nal tangent planes, respectively. Each component of
the vectors x′ and p′ is a complicated function of the
four components of the initial vectors: x′=x′(x,p) and
p′=p′(x,p). Therefore, it is convenient to introduce
first-order (paraxial) approximations. These approxima-
tions for x′ and p′ correspond to second-order approx-
imations of the traveltime function t and are valid for
relatively small magnitudes of the vectors x, p − p0,
x′, and p′

− p′

0 (i.e., in the vicinity of the central ray).
Hereafter, the magnitudes of all vectors are obtained
within the framework of the first-order (paraxial) ap-
proximation.

The central ray and all paraxial rays in its vicinity
can be described by the 4 × 4 matrix,

T (P ′

0, P0) ≡

 

A0 B0

C0 D0

!

, (1)

where A0, B0, C0, and D0 are 2 × 2 surface-to-surface
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paraxial matrices (Moser & Červený, 2007), which de-
scribe the transmission of the central ray between the
anterior and posterior surfaces:
 

x′

p′
− p′

0

!

=

 

A0 B0

C0 D0

! 

x

p − p0

!

. (2)

Given the deviations from the central ray in the
initial position (x) and slowness (p − p0) vectors, equa-
tion 2 yields the corresponding vectors at the posterior
surface, if the matrices A0, B0, C0, and D0 are known.
The surface-to-surface paraxial matrix T can also be
computed from the paraxial ray propagator matrix us-
ing surface transformation matrices (Hubral et al., 1992;
Červený, 2001; Moser & Červený, 2007).

Assuming the existence of the inverse matrix B−1
0 ,

equation 2 can be rewritten after simple algebraic oper-
ations as

p = p0 + B
−1
0 x

′

− B
−1
0 A0 x , (3)

and

p
′ = p

′

0 + C0 x − D0 B
−1
0 A0 x + D0 B

−1
0 x

′. (4)

Therefore, the initial and final slowness vectors of any
transmitted ray in the vicinity of the central ray can be
computed from equations 3 and 4, respectively.

2.2 Traveltime of transmitted events

The traveltime difference between the central ray and a
ray displaced at the anterior surface by dx̃ and at the
posterior surface by dx̃′ can be found from Hamilton’s
principal equation as the total differential,

dt(x̃, x̃′) = p̃′
· dx̃′

− p̃ · dx̃ . (5)

Hamilton’s equation was originally derived from general
variational principles. For example, the proof of equa-
tion 5 for anisotropic media in Buchdahl (1970) is based
on Fermat’s principle. The partial derivatives (p̃′ and
−p̃) of the total differential dt in equation 5 lead to
the fundamental relationship between phase and group
velocity for arbitrarily anisotropic media. Within the
framework of our approximation, it is possible to replace
the three-component vectors in equation 5 by their two-
component counterparts (Bortfeld, 1989):

dt(x,x′) = p
′

· dx′

− p · dx . (6)

Equation 6 preserves the general form of Hamilton’s
equation for the two-component position and slowness
vectors.

Substituting equations 3 and 4 into equation 6 and
integrating the resulting expression, we obtain:

t(x,x′) = t0 − p0 · x + p
′

0 · x
′ +

1

2
x
′

· D0 B
−1
0 x

′

+
1

2
x · B

−1
0 A0 x − x · B

−1
0 x

′ ; (7)

t0 is the exact one-way traveltime along the central ray.
Equation 7, also known as Hamilton’s point character-
istic, yields the traveltimes of paraxial rays transmitted
through an anisotropic heterogeneous medium between
the anterior (x) and posterior (x′) surfaces. If known,
the special form of Hamilton’s point characteristic al-
lows one to determine the complete seismic system. This
property is very important for model parameter estima-
tion.

2.3 Multi-azimuth prestack time migration

Time migration moves a weighted sum of the wavefield
amplitudes measured at the diffraction time surface to
the two-way traveltimes at the emerging point of the
image ray. An image ray is a transmitted ray that orig-
inates at the surface with the slowness vector parallel
to the surface normal and ends at the reflection point
(Hubral & Krey, 1980). The diffraction time surface is
obtained as the ensemble of the transmitted times from
all source-receiver combinations to the reflection point.
This type of migration is also called “diffraction stack”
or “Kirchhoff-type migration.”

The weighting functions are commonly applied to
preserve the amplitude behavior of reflected waves, or
in some cases even to compensate the amplitude for
losses caused by geometrical spreading (Schleicher et al.,
2007). For example, simplified versions of such weights
valid for horizontally layered media are often applied in
time migration and are considered as known here.

To define the migration operator, we still need to
obtain the diffraction time function of a hypothetical
diffractor at the reflection point, the associated image
ray and the two-way traveltime along that ray. Since the
reflection point is generally unknown, neither traveltime
can be found. To overcome this difficulty, we reformulate
the problem by starting from the migrated volume. The
amplitude at each time sample is considered to belong
to a time image point built by stacking along the diffrac-
tion times of a diffractor at the endpoint of the image
ray. If no reflector was found at the endpoint of the im-
age ray, the amplitude of the corresponding time image
sample is expected to vanish. A different approach that
leads (theoretically) to the same migration result oper-
ates in the vicinity of the normal ray (see Appendix A).

We consider an arbitrary image ray (coveniently
treated as the central ray) and build the diffraction time
function for every time sample. Parameters related to
this central ray will be denoted by the subscript “I .”
For example, the traveltime of the ray that connects
the receiver xr and the diffraction point x′ at the re-
flector is obtained from Hamilton’s point characteristic
for transmitted rays (equation 7) by employing the im-
age ray condition pI = 0 (Bortfeld, 1989; Hubral et al.,
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1992; Moser & Červený, 2007):

tr(xr,x
′) = tI + p

′

I · x
′ +

1

2
x
′

· DI B
−1
I x

′

+
1

2
xr · B

−1
I AI xr − xr · B

−1
I x

′ , (8)

where tI is the traveltime of the image ray, and AI , BI ,
CI , and DI (see above) are the surface-to-surface parax-
ial matrices along the image ray (Moser & Červený,
2007).

If the diffraction point coincides with the endpoint
of the image ray, all terms containing x′ in equation 8
vanish (i.e., the dependence on the primed coordinates
is eliminated). Hence, the hyperbolic approximation for
the traveltimes of rays transmitted from any receiver
position to the hypothetical diffraction point at the end-
point of the image ray simplifies to

t2r(xr,x
′) = t2I + tI xr · B

−1
I AI xr. (9)

Using equation 9 and an equivalent expression for the
ray transmitted from the source position, the needed
traveltimes may be calculated through the paraxial ma-
trix combination B−1

I AI by performing dynamic ray
tracing along the image ray. Although it would be at-
tractive to build the complete migration operator by
tracing only the central ray, it is not feasible in most
practical applications because the depth-domain veloc-
ity model is seldom known at the stage of time imaging.

Next, we take advantage of the fact that the diffrac-
tion time function in equation 9 depends only on the
receiver coordinates at the anterior surface. Further,
the 2×2 surface-to-surface matrix combination includes
the “global” parameters of the seismic system (around
a given central ray), which may be estimated by data
search. The receiver position vector in equation 9 can
be expressed through the azimuthal angle φ (measured
counterclockwise from the x-axis) and the distance dr

between the image ray and receiver position:

t2r(xr,x
′) = t2I + d2

r/V 2
TM (φ), (10)

with

V −2
TM (φ) ≡ tI (UI

11 cos2 φ

+ 2UI
12 cos φ sin φ + UI

22 sin2 φ) . (11)

VTM (φ) is the time-migration velocity defined by the
three independent “global” parameters (UI

11, UI
12, and

UI
22) of the symmetric matrix combination B−1

I AI . (The
symmetry of B−1

I AI is easily proved by building second
order partial derivatives with respect to the coordinates
in 9 and using the property that the order of differentia-
tion is interchangeable.) Equations 10 and 11 are similar
to the equation of the NMO ellipse in common-midpoint
geometry derived by Grechka & Tsvankin (1998). A ma-
jor difference between these two formulations is related
to the definition of azimuth. While the azimuthal an-
gle in the NMO formula is a data acquisition parameter

(i.e., the direction of a source-receiver pair), φ in equa-
tions 10 and 11 is defined as the azimuth of the receiver
position vector (i.e., the vector from the image ray to
the receiver position) which generally deviates from the
source-receiver direction (see Appendix A).

Equation 11, which represents the 3D velocity el-
lipse for time migration in heterogeneous anisotropic
media, relates the three unknown parameters UI

11, UI
12,

and UI
22 of Hamilton’s point characteristic to the az-

imuthally varying time-migration velocity. Equations 10
and 11 can be applied to rays between the source and
the diffraction point by substituting the distance to the
source position, dS, and the corresponding azimuthal
angle γ. The diffraction time function for multi-azimuth
3D prestack time migration is obtained by adding the
traveltimes for both legs of the reflected ray:

TTM = tr + ts =
q

t2I + d2
r/V 2

TM (φ)

+
q

t2I + d2
s/V 2

TM (γ). (12)

Thus, the velocity ellipse and the time-migration
operator are defined by three independent parameters,
which can be estimated by time-migration velocity anal-
ysis in at least three distinct azimuthal directions. In
practice, azimuthally-varying migration velocities are
obtained from time-image gathers computed in regular
surface intervals, which makes it possible to build the
migration operator without knowledge of the medium
parameters. Figure 1 shows the slice of a multi-azimuth
time-migration operator for zero offset; there is a 20%
difference between the migration velocities in the prin-
cipal directions.

The method outlined here is designed to solve the
mismatch problem that occurs in time migration of
multi-azimuth data (i.e., when the same depth point
creates different time images in different azimuthal di-
rections). It is devised for weakly heterogeneous me-
dia of arbitrary symmetry and can be applied prior to
anisotropic parameter estimation. The accuracy, how-
ever, is limited by the second-order approximation of
the diffraction time function valid for small and moder-
ate offsets. In contrast, the time-migration approach de-
scribed by Grechka & Tsvankin (1999) for orthorhombic
media does not rely on traveltime approximations but
requires knowledge of the P-wave time-processing pa-
rameters (the azimuth of the vertical symmetry planes,

the symmetry-plane NMO velocities V
(1,2)
nmo , and the

anellipticity parameters η(1,2,3)).

3 SYNTHETIC TESTS

Conventional time migration leads to a mismatch of
time-migrated events, if the velocity model is either lat-
erally heterogeneous or azimuthally anisotropic. First,
we illustrate migration errors caused by lateral hetero-
geneity by performing a test for an isotropic model with
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an intermediate plane dipping interface (Figure 2). The
synthetic volume included two 3D data sets with the
acquisition azimuths in the dip and strike directions of
the interface. Conventional prestack time migration in-
cluding common-image-gather (CIG) velocity analysis
was applied to each data set separately. Figure 3 shows
image gathers for the horizontal reflector beneath the
dipping interface computed in the dip and strike direc-
tions. Although the gathers obtained with the best-fit
velocity in each direction are flat, they show a time dif-
ference sufficient to degrade the quality of stacking. This
difference, caused by the 30◦-dip of the intermediate in-
terface (i.e., by lateral heterogeneity), is the reason for
destructive intereference on time-migration stacks often
observed in multi-azimuth time imaging.

For isotropic media, conventional processing leads
to distortions when the overburden is laterally hetero-
geneous and the image point is located outside the in-
cidence (sagittal) plane. The presence of heterogeneity
requires application of an azimuthally-dependent migra-
tion operator, while out-of-plane image rays correspond
to azimuthal imaging angles (i.e., the angles between
the x-axis and the lines from the source/receiver posi-
tions to the emergence point of the image ray) different
from the source-receiver azimuth. In our simple exam-
ple, the image rays for reflections recorded on the strike
line deviate from the incidence plane, which distorts the
migration result obtained using a single best-fit velocity.

Next, the same image gathers in dip and strike di-
rections were computed by our multi-azimuth prestack
time migration, which takes the azimuthal velocity vari-
ation into account (Figure 4). After application of the
optimal migration-velocity ellipse, flat gathers from dif-
ferent azimuthal directions are recorded at the same
time and can be stacked to obtain a high-quality final
image.

We also tested our algorithm on a laterally ho-
mogeneous azimuthally anisotropic model that includes
an HTI layer sandwiched between two isotropic layers.
The parameter δ(V ), which determines the elongation
of the P-wave NMO ellipse in HTI media (Tsvankin,
1997), was intentionally chosen to be uncommonly large
by absolute value. The synthetic data were generated
with anisotropic ray tracing code ANRAY developed
by Gajewski & Pšenč́ık (1987). Figure 5 shows several
input common-offset, common-azimuth sections for the
reflection from the bottom of the HTI layer.

The substantial time difference between the reflec-
tions in the planes parallel and perpendicular to the
symmetry axis is caused by the pronounced azimuthal
anisotropy (here associated with the parameter δ(V )).
This difference would result in a significant imaging mis-
match after conventional time migration, if a single ve-
locity is used for both principal azimuthal directions.
Note that image rays excited in either vertical symme-
try plane of the HTI layer do not deviate from the in-
cidence plane. Therefore, for this model it is possible to

avoid the mismatch by migrating narrow-azimuth data
for each symmetry plane with the best-fit velocity es-
timated for that plane by the conventional algorithm
(i.e., the approach that failed for the isotropic model
discussed above).

To carry out multi-azimuth time-migration velocity
analysis, we used equation 12. The time-migration ve-
locity ellipse was estimated by flattening the common-
image gathers for the available offsets and azimuths.
Because the symmetry-axis orientation is assumed to
be known, velocity analysis has to be applied only in
the principal directions of the model. The time-migrated
images of the azimuth-offset sections from Figure 5 are
displayed in Figure 6. Clearly, the reflection from the
bottom of the HTI layer is imaged at the same posi-
tion using all azimuth-offset combinations in the input
data. Figure 7 shows the time-migration response of one
of the constant-azimuth, constant-offset volumes in the
form of a time-slice, as well as in-line and cross-line sec-
tions.

4 CONCLUSIONS

We introduced a method for multi-azimuth prestack
time migration (MAPSTM) based on the azimuthally-
dependent diffraction time function. Hamilton’s prin-
cipal equation helped to obtain a relationship be-
tween azimuthally varying time-migration velocities and
3D prestack time-migration operators for arbitrarily
anisotropic, weakly heterogeneous media. The current
version of the method employs a second-order travel-
time approximation, which makes the MAPSTM oper-
ator sufficiently accurate only for small- and moderate-
offset data. The operator depends on three independent
parameters that form the “time-migration velocity el-
lipse.” The ellipse is obtained from time-migrated multi-
azimuth data by flattening common-image gathers for
all available offsets and azimuths. In contrast to exist-
ing migration methods for azimuthally anisotropic (e.g.,
orthorhombic) media, our algorithm does not require es-
timation of the normal-moveout velocities and relevant
anisotropy parameters.

To compare MAPSTM with conventional process-
ing, we generated multi-azimuth synthetic data for two
models, one of which is isotropic but laterally het-
erogeneous (it contains a dipping interface), while the
other includes an HTI layer with strong azimuthal
anisotropy. Although conventional migration may pro-
duce flat gathers in the principal azimuthal directions,
the time of migrated events varies with azimuth. This
time difference is sufficient to cause destructive interef-
erence on time-migration stacks often observed in multi-
azimuth time imaging. The time mismatch problem was
fully resolved for both models by applying MAPSTM
with the best-fit time-migration velocity ellipse.
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Figure 1. Time slice of the multi-azimuth time-migration
operator.
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(a)

(b)

Figure 2. Dip (a) and strike (b) sections of the isotropic
velocity model. An image ray at x=5 km and y=5.025 km
(the position of the image gathers in Figures 3 and 4) is
displayed along with two rays recorded at an offset of 2.5 km
in the dip and strike directions.
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(a)

(b)

Figure 3. Conventional CIG gathers in the dip (a) and strike
(b) directions for the isotropic model from Figure 2. The
gathers are computed with the optimal migration velocity
for each direction.

(a)

(b)

Figure 4. Multi-azimuth CIG gathers in the dip (a) and
strike (b) directions for the isotropic model from Figure 2.
Both gathers are computed with the optimal migration-
velocity ellipse. The first offset and the offset increment in
the CIG are 400 m.
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(a)

(b)

(c)

Figure 5. Input common-offset, common-azimuth sections
for a model composed of three horizontal layers. The top
and bottom layers are isotropic with the same velocity
Vp=2.5 km/s; the intermediate (second) layer is HTI with

VP,vert=3.25 km/s, δ(V ) = −0.348, and ǫ = 0.4. The az-
imuth and offset are 90◦ and 1000 m (a); 0◦ and 1000 m (b);
and 0◦ and 100 m (c).

(a)

(b)

(c)

Figure 6. Time-migrated common-offset, common-azimuth
sections generated by our multi-azimuth algorithm. The az-
imuth and offset are 90◦ and 1000 m (a); 0◦ and 1000 m (b);
and 0◦ and 100 m (c).
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Figure 7. Multi-azimuth time-migration response for the input data with the azimuth 90◦ and offset 1000 m. The time slice
at 1.3 s (top left); the inline section at y=1.25 km (top right); and the cross-line section at x=1.25 km (bottom).
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The Eleventh International Workshop on Seismic
Anisotropy (11IWSA). Geophysics, 71(1), 13JF–
29JF.

Hubral, P., & Krey, T. 1980. Interval velocities from

seismic reflection time measurements. Society of Ex-
ploration Geophysicists.

Hubral, P., Schleicher, J., & Tygel, M. 1992. Three-
dimensional paraxial ray properties - Part I. Basic
relations. Journal of Seismic Exploration, 1, 265–279.
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APPENDIX A: REFLECTED RAYS AND

NMO-VELOCITY EQUATION

Here, we consider the same model as in the main text,
but the normal ray will be treated as the central ray. By
definition, the final slowness vector of the normal ray
vanishes: p′

0 = 0. Hamilton’s point characteristic for
reflected rays is obtained by treating a reflected ray as
the combination of the two downgoing transmitted rays,
which obey Snell’s law at the reflection point (Bortfeld,
1989; Hubral et al., 1992):

T (xr,xs) =T0 − 2p0 ·

1

2
(xr + xs)

+
1

2
(xr + xs) · D

−1
0 C0

1

2
(xr + xs)

+
1

2
(xr − xs) · B

−1
0 A0

1

2
(xr − xs) , (A1)

where T0 is the exact two-way traveltime along the nor-
mal ray with the source and receiver positions xs =
xr = 0. Equation A1 gives the reflection traveltimes of
reflected rays from any source position xs to any re-
ceiver position xr in the second-order approximation.
The 2 × 2 symmetric surface-to-surface matrix combi-
nations B−1

0 A0 and D−1
0 C0 are related to the NIP and

normal wavefront, respectively (Hubral & Krey, 1980).
The hyperbolic reflection time function is obtained by
squaring both sides of equation A1 and keeping terms
up to the second order (Schleicher et al., 1993):

T 2(xr,xs) =[T0 − 2p0 ·

1

2
(xr + xs)]

2

+ 2T0
1

2
(xr + xs) · D

−1
0 C0

1

2
(xr + xs)

+ 2T0
1

2
(xr − xs) · B

−1
0 A0

1

2
(xr − xs).

(A2)

Equation A2 has found a wide range of applications
(Jäger et al., 2001).

The reflection time function for a CMP gather with
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the midpoint at the origin of the coordinate system is
obtained from equation A2 by setting 1

2
(xr + xs)=0:

T 2(xr,xs) = T 2
0 +2T0

1

2
(xr−xs)·B

−1
0 A0

1

2
(xr−xs).(A3)

We denote the three independent elements of the sym-
metric 2 × 2 matrix B−1

0 A0 by W11, W12, W22, and
express the offset vector xr − xs through its magnitude
h and angle α with the x-axis. After carrying out the
vector-matrix operations, equation A3 becomes:

T 2(xr,xs) = T 2
0 +

T0

2
(W11 cos2 α + 2W12 cos α sin α

+ W22 sin2 α) h2 = T 2
0 +

h2

V 2
nmo(α)

, (A4)

where

V −2
nmo(α) =

T0

2
(W11 cos2 α + 2W12 cos α sin α

+ W22 sin2 α). (A5)

Equations A4 and A5 are equivalent to the equation
of the NMO ellipse derived by Grechka & Tsvankin
(1998). The parameters W11, W12, and W22 of the
global matrix combination B−1

0 A0 define the NMO
ellipse and can be estimated from hyperbolic moveout
analysis for at least three distinct azimuths of the
CMP line. The NMO-velocity equations A4 and A5
appear to be similar to equations 10 and 11 for the
azimuthally-varying time-migration velocity. However,
NMO and time-migration velocities are identical only
in the special case when the normal and image rays
coincide, which happens in horizontally layered media.
In order to derive a time-migration operator from NMO
velocities (around the normal ray), it will be necessary
to add dip information.

A1 Time migration based on NMO velocities

To develop a time-migration formalism using the normal
ray and NMO velocities, we use an approach different
from the one described in the main text. As before, we
consider the diffraction time function of a hypothetical
diffractor at the reflection point. But here we start from
the normal ray (instead of the image ray) treating every
time sample along the normal ray as a possible reflection
point and stacking along the corresponding diffraction
time function. The stacked amplitude value is assigned
to the image time (two-way traveltime along the image
ray). The image ray is the transmitted ray between the
earth’s surface and the reflection point, whose initial
slowness vector is perpendicular to the surface. If no
reflector is found at the endpoint of the normal ray, the
amplitude obtained by summation is expected to vanish.

The diffraction time function of a diffractor at the
endpoint (x′ = 0 and p′

0 = 0) of the normal ray (in this
case chosen as the central ray) is obtained from Hamil-

ton’s point characteristic in equation 7. For example,
the traveltime from the receiver xr to the diffraction
point is

t(xr,x
′ = 0) = t0 − p0 · xr +

1

2
xr · B

−1
0 A0 xr , (A6)

where t0 is the exact one-way traveltime along the cen-
tral ray; the initial slowness vector p0 and the prod-
uct B−1

0 A0 also correspond to that ray. The second-
order (hyperbolic) approximation is obtained by squar-
ing both sides of equation A6 and dropping third- and
higher-order terms:

t2(xr,x
′ = 0) = [t0 − p0 · xr]

2 + t0 xr · B
−1
0 A0 xr .(A7)

The three independent elements W11, W12, W22 of the
2 × 2 symmetric matrix B−1

0 A0 can be found from az-
imuthal moveout analysis, as discussed above (equa-
tions A4 and A5). Finally, the diffraction time function
is obtained by substituting the NMO ellipse into equa-
tion A7 and adding a similar traveltime term for the
transmitted ray from the source position xs:

TD =

s

[t0 − p0 · xr]2 +
l2r

V 2
nmo(φ)

+

s

[t0 − p0 · xs]2 +
l2s

V 2
nmo(γ)

. (A8)

The distances lr and ls are measured from the normal
ray (where the NMO ellipse is determined), and γ and
φ are the azimuths to the source and receiver, respec-
tively. Given the NMO ellipse and the initial slowness
vector of the central ray, equation A8 yields the diffrac-
tion times for any source-receiver combination in the
prestack data. The final image time and image position
are found by simply searching for the shortest two-way
time among all rays transmitted from the surface to the
diffraction point.

Equation A8 helps us understand the difference
between the two time-migration approaches discussed
here. Whereas the algorithm based on the image-ray pa-
rameters (equation 12) requires only the time-migration
velocities, time migration operating with the normal-ray
parameters (equation A8) needs not just the NMO el-
lipse but also the initial slowness vector p0 (i.e., the
horizontal slowness) of the normal ray. However, with
the vector p0 estimated from zero-offset time slopes,
the two approaches produce equivalent time-migration
operators (in the second-order approximation). A post-
stack version of time migration based on NMO veloci-
ties and zero-offset slopes is used in Söllner & Andersen
(2005) for 3D kinematic imaging.
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