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ABSTRACT
Reservoir rocks such as heavy oils are characterized by significant attenuation
and, in some cases, attenuation anisotropy. Most existing attenuation studies
are focused on plane-wave attenuation coefficients, which determine the ampli-
tude decay along the raypath of seismic waves. Here, we discuss the influence
of attenuation on PP- and PS-wave reflection coefficients for anisotropic media
with main emphasis on models with VTI (transversely isotropic with a vertical
symmetry axis) symmetry. Concise analytic solutions obtained by linearizing
the exact plane-wave reflection coefficients are verified by numerical modeling.
To make a substantial contribution to reflection coefficients, attenuation has to
be strong, with the quality factor Q not exceeding 10. For such highly attenu-
ative media, it is also necessary to take attenuation anisotropy into account if
the magnitude of the Thomsen-style attenuation-anisotropy parameters is rela-
tively large. In general, the linearized reflection coefficients in attenuative media
include velocity-anisotropy parameters but have almost “isotropic” dependence
on attenuation. Our formalism also helps to evaluate the influence of the inho-
mogeneity angle (the angle between the real and imaginary parts of the slowness
vector) on the reflection coefficients. A nonzero inhomogeneity angle of the in-
cident wave introduces additional terms into the PP- and PS-wave reflection
coefficients, making conventional AVO (amplitude-variation-with-offset) analy-
sis inadequate for strongly attenuative media. It is interesting that an incident
P-wave with a nonzero inhomogeneity angle generates a mode-converted PS-
wave at normal incidence, even if both halfspaces have a horizontal symmetry
plane. This phenomenon can provide an alternative explanation for substantial
PS-wave energy at zero offset observed on field data. The linearized solutions
developed here can be used in AVO inversion for highly attenuative (e.g., gas-
sand and heavy-oil) reservoirs.

Key words: Attenuation anisotropy, quality factor, AVO, reflection coefficient,
inhomogeneity angle

1 INTRODUCTION

Traditionally AVO analysis has been carried out as-
suming the medium to be purely elastic. It is common
knowledge, however, that subsurface formations are at-
tenuative. Direct measurements using vertical seismic
profiling (VSP) (Hauge, 1981; Hedlin et al., 2001), well
logs (Schmitt, 1999), and rock samples (Behura et al.,
2007; Winkler & Nur, 1982) show that attenuation and
velocity dispersion can be significant, especially within
hydrocarbon-saturated zones. Therefore, some failures

of conventional AVO analysis can be attributed to the
influence of attenuation (Luh, 1988; Samec et al., 1990).

Physical-modeling experiments (Hosten et al.,
1987; Maultzsch et al., 2003; Zhu et al., 2007), rock-
physics studies (Behura et al., 2006; Prasad & Nur,
2003; Tao & King, 1990), and analysis of field data (Liu
et al., 1993; Lynn et al., 1999; Vasconcelos & Jenner,
2005) show that attenuation can be directionally de-
pendent and attenuation anisotropy often is more sig-
nificant than velocity anisotropy (Arts & Rasolofosaon,
1992; Hosten et al., 1987; Zhu et al., 2007). Therefore,
it is important to evaluate the influence of attenuation
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and attenuation anisotropy on plane-wave reflection co-
efficients.

Reflection coefficients in isotropic as well as
anisotropic attenuative media have been analyzed both
analytically and using numerical modeling. For exam-
ple, Krebes (1983) and Ursin & Stovas (2002) de-
rive closed-form expressions for reflection/transmission
coefficients in isotropic attenuative media, while
Nechtschein & Hron (1997) and Hearn & Krebes (1990)
study them numerically. For attenuative VTI media, nu-
merical analysis of reflection/transmission coefficients
are presented by Sidler & Carcione (2007). Existing
results for anisotropic media, however, do not pro-
vide physical insight into the dependence of reflec-
tion/transmission coefficients on the medium proper-
ties, in particular on the anisotropy parameters.

Here, using the Thomsen-style notation introduced
by Zhu & Tsvankin (2006), we develop linearized ap-
proximations for PP- and PS-wave reflection coefficients
in VTI media. In particular, our analytic solutions help
to evaluate the influence of the inhomogeneity angle (the
angle between the real and the imaginary parts of the
slowness vector) of the incident wave on the reflection
coefficients. Then we compute exact reflection coeffi-
cients for a realistic range of the anisotropy parameters
and assess the accuracy of the linearized expressions.

2 PERTURBATION ANALYSIS OF
REFLECTION/TRANSMISSION
COEFFICIENTS

For a welded contact between two arbitrary anisotropic
attenuative halfspaces, the boundary conditions of the
continuity of traction and displacement result in the
following system of linear equations (e.g., Vavrycuk &
Pšenč́ık, 1998):

C̃ · Ũ = B̃, (1)

where the accent ˜ denotes a complex quantity, C̃ cor-
responds to the displacement-stress matrix for the re-
flected and transmitted plane waves P, S1 and S2, B̃
is the displacement-stress vector of the incident wave,
and Ũ is the vector of the reflection (R) and transmis-
sion (T ) coefficients. C̃, Ũ, and B̃ are complex quanti-
ties because the stiffness tensor in attenuative media is
complex. Exact reflection/transmission coefficients (Ũ)
can be computed by solving the system of equations 1
numerically.

Following Vavrycuk & Pšenč́ık (1998) and J́ılek
(2002a,b), we apply the first-order perturbation the-
ory to a homogeneous attenuative isotropic background
medium. Linearization of the boundary conditions
(equation 1) yields the perturbation δŨ in the form

δŨ = (C̃0)−1(δB̃− δC̃ · Ũ0) . (2)

Here C̃0 is the displacement-stress matrix for the re-
flected/transmitted waves in the background medium

and δC̃ represents the perturbation of C̃0. Similarly,
δB̃ is the perturbation of the displacement-stress vec-
tor of the incident wave. Ũ0, the reflection/transmission
vector in the homogeneous background, is given by

Ũ0 = [0, 0, 0, 0, 0, 1]T . (3)

A similar perturbation approach is adopted by Ursin
& Stovas (2002) to derive reflection/transmission coeffi-
cients for isotropic attenuative media. (Their formalism
introduces a weak contrast in parameters across the in-
terface while keeping the perturbed upper and lower
halfspaces isotropic.) The change in the slownesses and
polarizations of the scattered waves, required for ob-
taining δC̃ and δB̃ in equation 2, can be computed by
perturbing the isotropic background medium (Jech &
Pšenč́ık, 1989). We extend their method, developed for
purely elastic media, to attenuative models by taking
attenuation in the background into account.

The density-normalized complex stiffness tensor of
the perturbed medium ãijkl can be written as

ãijkl = ã0

ijkl + δãijkl, (4)

where ã0

ijkl corresponds to the background medium and
δãijkl is the perturbation. The tensor δãijkl is responsi-
ble for both the velocity and attenuation anisotropy of
the perturbed medium. The background tensor ã0

ijkl is
complex:

ã0

ijkl = a0

ijkl + i a0,I

ijkl, (5)

where a0

ijkl and a0,I
ijkl are the real and imaginary parts

of ã0

ijkl, respectively.
The quality-factor (Q) matrix (in the two-index

Voigt notation) is defined as (e.g., Carcione, 2007)

Qij =
aij

aI
ij

. (6)

For an isotropic medium, the Q-matrix takes the form

Q =

2

6

6

6

6

6

6

4

QP0 Q13 Q13 0 0 0
Q13 QP0 Q13 0 0 0
Q13 Q13 QP0 0 0 0
0 0 0 QS0 0 0
0 0 0 0 QS0 0
0 0 0 0 0 QS0

3

7

7

7

7

7

7

5

,(7)

where QP0 and QS0 control the P- and the S-wave at-
tenuation, respectively, and Q13 is the following function
of QP0 and QS0 (Zhu & Tsvankin, 2006):

Q13 = QP0

a33 − 2a55

a33 − 2a55
QP0

QS0

. (8)

The Christoffel equation, which describes plane-wave
propagation, can be written as

(ãijkl k̃2 ninl − ω δjk) g̃j = 0; (9)

n is the unit slowness vector, k̃ is the wave vector, ω
is the frequency, and g̃ is the polarization vector. In
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attenuative media, k̃ is complex and is given by

k̃ = k − i kI , (10)

where k controls the velocity and kI the attenuation in
the direction n. The ratio of kI to k yields the normal-
ized attenuation coefficient A, which defines the rate
of amplitude decay per wavelength (Zhu & Tsvankin,
2006):

A =
kI

k
. (11)

When attenuation is weak (1/Q ≪ 1) and isotropic,

A ≈
1

2Q
. (12)

In general, the real (k) and imaginary (kI) parts of the
wave vector can have different orientations, and the an-
gle ξ between them is usually called the inhomogeneity
angle (Figure 1b). For ξ = 0, the phase direction coin-
cides with the direction of maximum attenuation (Fig-
ure 1a), which corresponds to so called “homogeneous
wave propagation.”

The perturbations of the wave (δk̃) and polariza-
tion (δg̃) vectors, obtained by substituting the per-
turbed tensor ãijkl (equation 4) into the Christoffel
equation 9, are used in equation 2 to derive δŨ (Jech &
Pšenč́ık, 1989; Vavrycuk & Pšenč́ık, 1998; J́ılek, 2002b).
Note that the vector n in equation 9 is assumed to be
real, so the perturbation analysis used here for comput-
ing δk̃ and δg̃ is strictly valid only for plane waves with
zero inhomogeneity angle. Nevertheless, our results are
applicable for small inhomogeneity angles (< 30◦) even
if attenuation is strong (< 10), as will be shown later.

The complex P- and S-wave velocities (ṼP0 and
ṼS0) in the background attenuative isotropic medium
have the form

ṼP0 =
ω

k̃P0

≈ VP0 (1 + iAP0), (13)

ṼS0 =
ω

k̃S0

≈ VS0 (1 + iAS0), (14)

where VP0 and VS0 are the phase velocities and AP0 and
AS0 are the normalized attenuation coefficients of P-
and S-waves, respectively. In equations 13 and 14, terms
of the second and higher order in 1/Q are neglected.

3 INCIDENT P-WAVE WITH ZERO
INHOMOGENEITY ANGLE

If the inhomogeneity angle is set to zero, all terms in
equation 2 coincide with those given in Vavrycuk &
Pšenč́ık (1998) and J́ılek (2002a,b) for non-attenuative
media, but they become complex quantities. Hence, the
linearized reflection coefficients for P-waves (Vavrycuk
& Pšenč́ık, 1998) and PS-waves (J́ılek, 2002a) can be
adapted in a straightforward way for attenuative me-
dia.

(a)

(b)

Figure 1. Incident plane wave with (a) zero inhomogeneity
angle and (b) nonzero inhomogeneity angle ξ. k and kI are
the real and imaginary components (respectively) of the wave
vector, and θ is the incidence phase angle.

3.1 PP-wave reflection coefficient

3.1.1 Arbitrarily anisotropic media

The linearized PP-wave reflection coefficient in arbitrar-
ily anisotropic media obtained from equation 2 for an
incident wave with zero inhomogeneity angle is given by

RH

PP =
∆ρ

2ρ0

+
∆ã33

4Ṽ 2

P0

+

 

∆ã13

2Ṽ 2

P0

−
∆ã33

4Ṽ 2

P0

−
∆ã55

Ṽ 2

P0

−
2Ṽ 2

S0

Ṽ 2

P0

∆ρ

ρ0

!

sin2 θ

+
∆ã11

4Ṽ 2

P0

sin4 θ, (15)
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Figure 2. Magnitude of the PP-wave reflection coefficient
at the ocean floor for different quality factors QP0,2 of the
ocean-floor sediments. The solid lines are the exact coef-
ficients and dashed lines mark the linearized approxima-
tion 16. The model parameters are listed in Table 1.

where the superscript “H” (“homogeneous”) denotes an
incident wave with ξ = 0◦, ∆ is the contrast in a cer-
tain parameter across the interface, ρ0 is the density of
the background medium, ãij are the density-normalized
complex stiffness coefficients in Voigt notation (i.e., the
stiffness matrix), and θ the incidence angle (i.e., the an-
gle between the slowness vector of the incident wave
and the interface normal; Figure 1a). Equation 15 is
derived under the assumption that the contrasts in
the medium properties across the interface are small:
|∆ãijkl| ≪ ‖ã0

ijkl‖, |∆ρ| ≪ ρ0.
The linearized reflection coefficient in equation 15

reduces to that in purely elastic media if all parameters
are made real. Thus, linearized reflection coefficients for
attenuative media can be derived from those for purely
elastic media by simply making the stiffnesses complex.
Although equation 15 is strictly valid only for zero inho-
mogeneity angle (for all waves), it remains sufficiently
accurate for an arbitrary inhomogeneity angle, unless
the medium is strongly attenuative (as shown below).

3.1.2 VTI media

Next, we analyze equation 15 for the special case of
attenuative VTI media. It is convenient to express the
reflection coefficients in terms of the velocity-anisotropy
and attenuation-anisotropy parameters using Thomsen-
style notation. Here, we use the anisotropy parameters
AP0, AS0, ǫ

Q
, δ

Q
, and γ

Q
for attenuative TI media in-

troduced by Zhu & Tsvankin (2006). AP0 and AS0 are
the normalized symmetry-direction attenuation coeffi-
cients of P- and S-waves, respectively, ǫ

Q
and δ

Q
control

the angular variation of the P- and SV-wave attenua-
tion coefficients, and γ

Q
governs SH-wave attenuation

anisotropy.

To simplify equation 15, it is convenient to assume
that terms proportional to 1/Q2 (but not to 1/Q) are
small. If we retain terms such as ∆VP0/(VP QP0) and
∆AP0/QP0 but drop those proportional to 1/Q2

P0 and
1/Q2

S0, equation 15 takes the form

RH

PP = RH

PP(0) + GH

PP sin2 θ + CH

PP sin4 θ, (16)

where RH

PP(0) is the normal-incidence PP-wave reflec-
tion coefficient (AVO intercept), GH

PP is the AVO gra-
dient, and CH

PP is the curvature.
In equation 15 we retained only the quartic and

lower-order terms in sin θ. Therefore, the accuracy of
equation 16 somewhat decreases with incidence angle
(Figure 2). Still even for QP0,2 as low as 2.5, the lin-
earized approximation is close to the exact reflection
coefficient for θ ≤ 30◦.

Equation 16 is a Shuey-type approximation for the
PP reflection coefficient in attenuative media, in which
all three terms are complex:

RH

PP(0) =
∆ρ

2ρ0

+
∆VP0

2VP0

+
∆AP0

2

„

i +
1

QP0

«

, (17)

GH

PP =
−2

g2

∆ρ

ρ0

+
∆VP0

2VP0

−
4

g2

∆VS0

VS0

+
∆δ

2

+i

„

∆AP0

2
−

4∆AS0

g2

«

+
i

QP0

„

2

g2

∆ρ

ρ0

+
4

g2

∆VS0

VS0

−
i

2
∆AP0

+
4i

g2
∆AS0 +

∆δ
Q

4

«

−
i

QS0

2

g2

„

∆ρ

ρ0

+ 2
∆VS0

VS0

«

, (18)

and

CH

PP =
∆VP0

2VP0

+
∆ǫ

2

+
i

2
∆AP0 +

1

QP0

„

∆AP0

2
+

i

4
∆ǫ

Q

«

; (19)

g ≡ VP0/VS0. The contribution of the terms scaled by
1/QP0 and 1/QS0 in equations 17–19 is of the second
order, unless attenuation is uncommonly strong.

Eliminating the influence of attenuation on RH

PP(0),
GH

PP, and CH

PP in equations 17–19 reduces them to well-
known expressions for the PP-wave intercept, gradi-
ent, and curvature (respectively) for purely elastic VTI
media (Rüger, 2002). Since the attenuation coefficient
A ∼ 1/2Q, it is clear from equations 17–19 that the
influence of attenuation on the reflection coefficient is
comparable to that of the velocity and density con-
trasts only if the medium is strongly anelastic (i.e.,
QP0, QS0 < 10). This conclusion is confirmed by the
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Parameters Fig. 2 Fig. 3 Fig. 4 Figs. 5 & 6 Fig. 8 Fig. 9

ρ1 1.0 2.0 2.0 2.0 2.3 2.3

VP0,1 1.5 2.0 2.0 2.0 3.3 3.3

VS0,1 0 1.1 1.1 1.1 1.9 1.9

δ1 0 0.2 0.2 0.2 0 0

ǫ1 0 0.1 0.1 0.1 0 0

QP0,1 ∞ 500 500 - 5 -

QS0,1 ∞ 500 500 - 5 -

δ
Q,1

0 0.8 0.8 0.8 0 0

ǫ
Q,1

0 -0.4 -0.4 -0.4 0 0

ρ2 1.2 2.0 2.0 2.0 2.0 2.0

VP0,2 1.7 1.8 1.8 1.8 2.5 2.5

VS0,2 0.3 1.0 1.0 1.0 1.3 1.3

δ2 0 0 0 0 0 0.1

ǫ2 0 0 0 0 0 0.2

QP0,2 - - - - 5 -

QS0,2 50 - - - 50 -

δ
Q,2

0 0 - 0 0 0.8

ǫ
Q,2

0 0 0 0 0 -0.4

Table 1. Medium parameters used in the numerical tests. For all models, the symmetry-direction velocities (VP0 and VS0) are
in km/s and density (ρ) is in gm/cm3.

test in Figure 3 with the model parameters simulating
an interface between shale and oil sand (the shale is
non-attenuative). When the oil sand is moderately at-
tenuative (QP,2 = QS,2 = 50), the reflection coefficient
is almost identical to those in the elastic case. Even a
Q-value of 10 does not significantly change the reflection
coefficient. However, when the attenuation is extremely
strong (QP,2 = QS,2 = 2.5 or 5), the reflection coef-
ficient substantially deviates from that for the purely
elastic model.

Note that ∆AP0 in equation 17 is responsible for
the influence of attenuation on the normal-incidence re-
flection coefficient. In fact, the “isotropic” parameter
∆AP0 makes a more significant contribution to GH

PP

and CH

PP than do ǫ
Q

and δ
Q

, because the attenuation-
anisotropy parameters in equations 18 and 19 are scaled
by 1/QP0.

In purely elastic anisotropic media, the linearized
AVO gradient is sensitive to the velocity-anisotropy
parameters (e.g., to the coefficient δ for P-waves in
VTI media; see equation 18). The AVO gradient in
equation 18, however, is weakly dependent on the
attenuation-anisotropy parameters, unless attenuation
is uncommonly strong. Although the parameter δ

Q
gov-

erns the P-wave attenuation near the symmetry axis, its
influence on GH

PP is less significant than that of δ be-
cause ∆δ

Q
is scaled by 1/QP0. Similarly, the contribu-

tion of ∆ǫ
Q

to CH

PP (equation 19) is smaller than that
of ∆ǫ. Because the influence of the parameter ǫ

Q
in-

creases with the incidence angle, it does not contribute
to the AVO gradient.⋆ Therefore, the reflection coeffi-
cient in media with Q > 10 is more influenced by veloc-
ity anisotropy than by attenuation anisotropy.

This conclusion is confirmed by Figure 4 where the
model is similar to that in Figure 3, but the oil sand
exhibits attenuation anisotropy. When attenuation is
weak (Q = 50), the AVO gradient barely varies with
the attenuation-anisotropy parameter δ

Q
. However, as

the magnitude of attenuation increases (Q ≤ 10), the in-
fluence of attenuation anisotropy becomes pronounced.
Indeed, strong attenuation can even change the sign of
the AVO gradient. Our results confirm the common view
that moderate attenuation does not substantially dis-
tort reflection coefficients. For highly attenuative media

⋆The parameters γ and γ
Q

only control the anisotropy of SH-
waves, which are decoupled from P- and SV-waves analyzed
here.
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Figure 3. Exact PP-wave reflection coefficient for an in-
terface between a non-attenuative VTI shale and isotropic
attenuative oil sand (Table 1). The solid lines correspond to
different Q-values in the sand (Q = QP0,2 = QS0,2), and the
gray dashed line corresponds to a non-attenuative oil sand
(QP0,2 = QS0,2 = ∞).
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Figure 4. Exact PP-wave AVO gradient as a function of
the attenuation-anisotropy parameter δ

Q,2
in the reflecting

halfspace. The model is similar to that in Figure 3, but the
attenuation in the oil sand is anisotropic (Table 1).

with Q < 10, however, it is necessary to take not just at-
tenuation, but also attenuation anisotropy into account.

3.2 PS-wave reflection coefficient for VTI
media

Using the approach outlined above, we obtained the
following closed-form linearized expression for the PS-
wave reflection (conversion) coefficient in attenuative
VTI media:

RH

PS = BH

PS sin θ + KH

PS sin3 θ, (20)

where the coefficients BH

PS and KH

PS (the gradient and
curvature terms, respectively, in conventional PS-wave
AVO analysis) are given by

BH

PS = −
2 + g

2g

∆ρ

ρ0

−
2

g

∆VS0

VS0

+
g

2(1 + g)
∆δ

−i
2

g
∆AS0 +

i

QP0

f1 −
i

QS0

f2, (21)

KH

PS =
(3 + 2g)

4g2

∆ρ

ρ0

+
2 + g

g2

∆VS0

VS0

+
1 − 4g

2(1 + g)
∆δ +

g

1 + g
∆ǫ

+i
2 + g

g2
∆AS0 −

i

2QP0

f3 +
i

2QS0

f4. (22)

Here, f1, f2, f3, and f4 are linear combinations of the
parameter contrasts across the interface listed in Ap-
pendix A. The contribution of f1,2,3,4 to the reflection
coefficient is of the second order because they are scaled
by 1/QP0 or 1/QS0.

The real part of the reflection coefficient in equa-
tion 20 coincides with the corresponding linearized ex-
pression for PS-waves in a purely elastic VTI medium.
Most conclusions drawn above for P-waves remain valid
for the PS-wave reflection coefficients as well. In partic-
ular, the influence of the attenuation contrasts to RH

PS

becomes comparable to that of the velocity and density
contrasts only when QP0, QS0 ≤ 10. The contribution
of attenuation to RH

PS is controlled primarily by from
the contrast in AS0 (equations 21 and 22) because ∆ǫ

Q

and ∆δ
Q

contribute only to the functions f1,3 scaled by
1/QP0 (equations A1 and A3).

4 INCIDENT P-WAVE WITH A NONZERO
INHOMOGENEITY ANGLE

If the upper halfspace is attenuative, the incident P-
wave can have a nonzero inhomogeneity angle (Fig-
ure 1b). This situation may be typical, for example,
for the bottom of an attenuative reservoir. Since ξ is
determined by the medium properties along the whole
raypath, the imaginary part kI of the wave vector of
the incident wave may even deviate from the incidence
plane. However, for simplicity, we assume that both the
real and imaginary parts of the wave vector are confined
to the incidence plane.

For a nonzero inhomogeneity angle, the Christoffel
equation becomes

(ãijkl k̃i k̃l − ω δjk) g̃j = 0. (23)

Here, the real (k) and imaginary (kI) parts of k̃ point
in different directions (Figure 1b).

Although the perturbation analysis of Jech &
Pšenč́ık (1989) is not strictly valid for equation 23, it
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Figure 5: Magnitude of the exact (solid lines) and approximate (dashed lines, equation 25) PP-wave reflection coefficient as a VTI/isotropic interface for different
inhomogeneity angles. The P- and S-wave attenuation coefficients in the vertical (symmetry-axis) direction are identical and do not change across the interface (Q =
QP0,1 = QP0,2 = QS0,1 = QS0,2). (a) ξ = 0◦, Q = 25, (b) ξ = 0◦, Q = 5, (c) ξ = 0◦, Q = 2.5, (d) ξ = 10◦, Q = 25, (e) ξ = 10◦, Q = 5, (f) ξ = 10◦, Q = 2.5, (g)
ξ = 25◦, Q = 25, (h) ξ = 25◦, Q = 5, and (i) ξ = 25◦, Q = 2.5. The other model parameters are listed in Table 1.
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remains sufficiently accurate for small values of ξ, espe-
cially when attenuation is not strong (Zhu & Tsvankin,
2006). Therefore, the formulation of Vavrycuk &
Pšenč́ık (1998) and J́ılek (2002a,b) can be applied in
a straightforward way to linearize the reflection coef-
ficients for an incident wave with nonzero ξ. The nu-
merical results below confirm that this approach yields
an accurate approximation for reflection coefficients for
most plausible attenuative models.

4.1 PP-wave reflection coefficient

The linearized PP-wave reflection coefficient for arbi-
trarily anisotropic media depends on the following pa-
rameters:

RIH

PP = f0(∆ρ/ρ0, ṼP0, ṼS0, ∆ã11, ∆ã13, ∆ã15,

∆ã33, ∆ã35, ∆ã55, θ, ξ), (24)

where f0 is a linear function. Due to the complicated
form of f0, it is not shown here explicitly. The reflection
coefficient in equation 24 depends on three additional
stiffness contrasts (∆ã11, ∆ã15, and ∆ã35) compared to
that for ξ = 0◦ (equation 15).

Dropping cubic and higher-order terms in sin θ and
sin ξ, we simplify the perturbation result 24 to

RIH

PP = RIH

PP(0) + BIH

PP sin θ + GIH

PP sin2 θ, (25)

where

RIH

PP(0) = RH

PP(0) +
sin2 ξ

4QP0

f5, (26)

BIH

PP =
−i sin ξ

QP0

f6, (27)

GIH

PP = GH

PP +
i sin2 ξ

8QP0

f7. (28)

Here, RH

PP(0) and GH

PP are the solutions for ξ = 0◦ (su-
perscript “H”) given by equations 17 and 18, respec-
tively, and f5, f6, and f7 are linear functions listed in
Appendix A.

As illustrated by Figure 5, equation 25 remains ac-
curate for the inhomogeneity angle as large as 25◦. Even
for Q = 2.5 and ξ = 25◦, (Figure 5i), approximation 25
deviates from the exact reflection coefficient by less than
10%.

In contrast to the conventional AVO equation for
non-converted waves, which represents an even function
of θ (e.g., equation 16), equation 25 includes the sin θ-
term. Therefore, if attenuation is strong and the inho-
mogeneity angle ξ is non-negligible, the basic equation
of conventional PP-wave AVO analysis breaks down,
which may have significant implications for AVO inver-
sion and interpretation.

However, since the inhomogeneity angle ξ is associ-
ated with the terms f5, f6, and f7, which are scaled by
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Figure 6. Magnitude of the exact PP-wave reflection coeffi-
cient at a VTI/isotropic interface for different inhomogene-

ity angles. As in Figure 5, Q = QP0,1 = QP0,2 = QS0,1 =
QS0,2; (a) Q = 50, (b) Q = 5, and (c) Q = 2.5. The other
model parameters are listed in Table 1.
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Figure 7. PP-wave reflection coefficient may become asym-
metric with respect to θ = 0◦ for a nonzero inhomogeneity
angle ξ. As before, k and kI are the real and imaginary parts,
respectively, of the wave vector of the incident P-wave.

1/Q, its influence becomes pronounced only in strongly
attenuative media. As illustrated in Figure 6, the vari-
ation of the inhomogeneity angle from 0◦ to 50◦ does
not significantly change the reflection coefficient even
for Q = 5 (Figure 6b). Only when Q = 2.5 and the in-
homogeneity angle exceeds 30◦, its contribution to the
reflection coefficient (in particular, to the term BIH

PP)
becomes substantial (Figure 6c).

The asymmetry of the reflection coefficient with re-
spect to θ = 0◦ (Figures 6b and 6c), which increases
with the inhomogeneity angle, is explained in Figure 7.
In our modeling, the inhomogeneity angle of the incident
wave is fixed, which implies that the imaginary part kI

of the wave vector makes different angles with the ver-
tical for the incidence angles θ and −θ. As a result, the
reflection coefficient for positive and negative incidence
angles is not the same.

In reality, it is unlikely for the incident wave to
have a constant inhomogeneity angle for a wide range
of θ. A more plausible scenario is depicted in Figure 8a.
The model includes an attenuative reservoir beneath a
purely elastic cap rock. Because the cap rock is purely
non-attenuative, the wave incident upon the reservoir
has a real wave vector. According to Snell’s law, the hor-
izontal slowness (and the horizontal component of the
wave vector) has to be preserved during reflection and
transmission. Therefore, the vector kI (the imaginary
part of k̃) in the reservoir cannot have a horizontal com-
ponent, and the inhomogeneity angle of the transmitted
wave is equal to the transmission angle θT (Figure 8a).
For the reflection from the bottom of the reservoir, θT

becomes the incidence angle. Therefore, the wave vec-
tors k and kI for the angles θT and −θT are symmetric
with respect to the reflector normal, and the PP-wave
reflection coefficient is an even function of θ (Figure 8b,
gray line). However, for more complicated overburden
models, the inhomogeneity angle can be different from
the incidence angle, which makes the reflection coeffi-
cient asymmetric with respect to θ (Figure 8b, black
line; ξ = 50◦ was held constant).
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Figure 8. (a) Wave vector of a plane wave in an attenua-
tive medium (reservoir) overlaid by a purely elastic medium
(cap rock). The transmission angle θT is equal to the inho-
mogeneity angle ξ of the transmitted wave. kref and kI,ref

are the real and imaginary components, respectively, of the
wave vector for the reflection from the bottom of the atten-
uative layer. (b) Exact PP-wave reflection coefficient from
the bottom of the attenuative layer for ξ = θT (gray line,
Figure 8a) and for a constant inhomogeneity angle ξ = 50◦

(black line). The model parameters are listed in Table 1.

4.2 PS-wave reflection coefficient

As is the case for PP-waves, the inhomogeneity angle of
the incident P-wave changes the conventional PS-wave
AVO equation. The linearized PS-wave coefficient takes
the form

RIH

PS = RIH

PS(0) + BIH

PS sin θ + GIH

PS sin2 θ, (29)

where

RIH

PS(0) = i
sin ξ

QP0

f8, (30)

BIH

PS = BH

PS, (31)
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GIH

PS = −i
sin ξ

QP0

f9. (32)

In equations 29–32, cubic and higher-order terms in sin θ
and sin ξ are neglected. BH

PS is the PS-wave AVO gradi-
ent for an incident wave with zero inhomogeneity angle
(equation 21), and the terms f8 and f9 are linear combi-
nations of the parameter contrasts across the interface
(Appendix A).

Equation 29 is different from equation 20 for ξ = 0◦,
in which only the coefficients of odd powers in sin θ are
nonzero (i.e., the reflection coefficient is an odd func-
tion of θ). The deviation of equation 29 from the con-
ventional PS-wave AVO equation is illustrated in Fig-
ure 9, where the magnitude of the PS-wave reflection
coefficient in strongly attenuative media (Q = 2.5) for
ξ = 50◦ is visibly asymmetric with respect to θ = 0◦.
Also, for Q < 10 RIH

PS significantly deviates from the
reflection coefficient for a purely elastic medium, which
almost coincides with that for Q = 50.

Because the linearized AVO gradient BIH

PS is inde-
pendent of ξ (for small ξ), the inhomogeneity angle has
a greater influence on RIH

PS(0) and GIH

PS than on BIH

PS. For
zero inhomogeneity angle of the incident wave, RIH

PS(0)
and GIH

PS vanish and equation 29 reduces to equation 20
(ignoring the cubic term in sin θ) discussed above.

For ξ 6= 0, the normal-incidence PS-wave reflection
coefficient RIH

PS in strongly attenuative media can attain
substantial values (Figure 9). Nonzero PS-wave ampli-
tude at normal incidence can also be caused by such fac-
tors as lateral heterogeneity, the influence of additional
terms of the ray-series expansion on point-source radi-
ation (Tsvankin, 1995), and the deviation of the reflec-
tor from the symmetry planes of the model (Behura &
Tsvankin, 2006). However, we consider only plane-wave
reflection coefficients and the model in Figure 9 is com-
posed of homogeneous VTI halfspaces with a common
horizontal symmetry plane. A nonzero inhomogeneity
angle of the vertically travelling P-wave makes its wave
vector asymmetric with respect to the reflector normal,
which generates the PS conversion.

5 CONCLUSIONS

We analyzed the PP- and PS-wave reflection coefficients
in attenuative anisotropic media using linearized ap-
proximations verified by exact numerical modeling. For
an incident P-wave with zero inhomogeneity angle, the
form of the linearized PP- and PS-wave reflection co-
efficients is the same as that in purely elastic media,
but all terms become complex. The general solutions
for arbitrarily anisotropic media were simplified for VTI
symmetry to obtain simple closed-form expressions in
Thomsen-style notation.

Both analytic and numerical results show that only
in the presence of strong attenuation (Q < 10) does the
contribution of the imaginary part of the stiffness ten-
sor (which is responsible for attenuation) become com-
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Figure 9. Magnitude of the exact PS-wave reflection coef-
ficient at an isotropic/VTI interface for a nonzero inhomo-
geneity angle (ξ = 50◦) of the incident P-wave and variable
quality factor Q = QP0,1 = QP0,2 = QS0,1 = QS0,2. The
model parameters are listed in Table 1.

parable to that of the real part. In particular, the influ-
ence of the attenuation-anisotropy parameters ǫ

Q
and

δ
Q

on reflection coefficients typically is much weaker
than that of the velocity-anisotropy parameters ǫ and
δ. As expected from the parameter definitions, δ

Q
con-

tributes to the AVO gradient (i.e., to the reflection co-
efficient at small incidence angles), while the influence
of ǫ

Q
increases with incidence angle. The largest at-

tenuation terms in the reflection coefficients for both
PP- and PS-waves are proportional to the contrasts
in the normalized symmetry-direction attenuation co-
efficients AP0 and AS0 because the contrasts in the
attenuation-anisotropy parameters are scaled by 1/QP0.
Therefore, for AVO analysis in strongly attenuative me-
dia (Q < 10), it is sufficient to take the influence of AP0

and AS0 into account, while in media with exceptionally
strong attenuation (Q < 5), it is necessary to consider
the influence of ǫ

Q
and δ

Q
as well.

If the incident wave has a nonzero inhomogeneity
angle ξ, the form of the linearized reflection coefficients
is different from the conventional AVO expression. In
particular, the PP-wave reflection coefficient depends
on sin θ and sin3 θ and is no longer an even function
of θ. Likewise, the PS-wave reflection coefficient at nor-
mal incidence does not vanish for ξ 6= 0◦ and may even
attain substantial values. However, the contribution of
the inhomogeneity angle to the AVO response becomes
significant only in media with anomalously high atten-
uation (such as heavy-oil-saturated rocks) with Q < 5.

Despite the presence of attenuation-related terms,
our linearized AVO equations have an easily inter-
pretable form that provides useful physical insight into
the reflectivity of anisotropic attenuative media. Their
application can help to avoid errors in AVO analysis
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and, potentially, invert prestack reflection amplitudes
for the attenuation parameters.
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APPENDIX A: LINEAR FUNCTIONS IN
THE APPROXIMATE REFLECTION
COEFFICIENTS

Here, we give explicit expressions for the linear func-
tions fi in the approximate equations for the reflection
coefficients.

The functions f1, f2, f3, and f4 in equa-
tions 21 and 22 have the form

f1 =
1

2g

∆ρ

ρ0

+
1

g

∆VS0

VS0

+
g

4(1 + g)2
∆δ

+
i

g
∆AS0 +

g

4(1 + g)
∆δ

Q
, (A1)

f2 =
1

2g

∆ρ

ρ0

+
1

g

∆VS0

VS0

+
g

4(1 + g)2
∆δ

+
i

g
∆AS0, (A2)

f3 =
3 + g

2g2

∆ρ

ρ0

+
4 + g

g2

∆VS0

VS0

−
g

(1 + g)2
∆ǫ +

5g

4(1 + g)2
∆δ + i

4 + g

g2
∆AS0

−
g

(1 + g)2
∆ǫ

Q
+

4g − 1

4(1 + g)
∆δ

Q
, (A3)

f4 =
3 + g

2g2

∆ρ

ρ0

+
4 + g

g2

∆VS0

VS0

−
g

(1 + g)2
∆ǫ

+
5g

4(1 + g)2
∆δ + i

1

g2
∆AS0, (A4)

where g ≡ VP0/VS0.
The functions f5, f6, and f7 in equations 26–28 are

given by

f5 = −i
∆VP0

VP0

+ ∆AP0, (A5)

f6 =
−2

g2

∆ρ

ρ0

+
∆VP0

2VP0

−
4

g2

∆VS0

VS0

+
∆δ

2
+ i

„

∆AP0

2
−

4∆AS0

g2

«

, (A6)

f7 =

„

1 +
1

g2

«

∆VP0

VP0

− ∆δ

+i

„

1 +
1

g2

«

∆AP0. (A7)

Finally, f8 and f9 in equations 30 and 32 are

f8 =
2 + g

4g

∆ρ

ρ0

+
∆VS0

gVS0

−
g

4(1 + g)
∆δ

+
i

g
∆AS0, (A8)

f9 =
9 + 8g + g2

8g2

∆ρ

ρ0

+
3 + 2g

g2

∆VS0

VS0

+
3 − 13g

8(1 + g)
∆δ +

3g

2(1 + g)
∆ǫ

+i
3 + 2g

g2
∆AS0. (A9)


